Подобное растворяется в подобном 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Подобное растворяется в подобном



Вещество лучше растворяется в жидкости, если оно обладает той же полярностью и сходными прочими характеристиками

 

Всем известно, что масло и вода не смешиваются: если мы добавим каплю масла в стакан с водой, с этой каплей ничего не произойдет, она не растворится. С другой стороны, если в воду капнуть спирт (или этанол, как говорят химики), капля сразу исчезнет, потому что она растворилась. Это можно проверить, добавив каплю красного вина в стакан с водой. Химики объясняют такое поведение веществ эмпирическим правилом «подобное растворяется в подобном».

Дело в том, что вода — полярная молекула. Электроны в молекуле воды большую часть времени проводят около кислорода, и, хотя суммарный электрический заряд всей молекулы равен нулю, молекула воды со стороны водорода становится положительно заряженной. Молекула этанола также полярная, и поэтому между молекулами воды и этанола могут образовываться водородные связи (см. химические связи). В каком-то смысле вода и этанол «хватаются» друг за друга. При перемешивании этих двух веществ их молекулы взаимодействуют и этанол быстро растворяется.

С другой стороны, масло состоит из неполярных молекул, поэтому между ними и молекулами воды нет связей. и вода не может «схватиться» за углеводородные молекулы масла. В свою очередь, масло не может присоединиться достаточно прочно к какой-либо молекуле воды, чтобы оттолкнуть другие молекулы воды, как происходило бы при растворении. Масло не «подобно» воде и не растворяется в ней.

В обычной жизни мы часто используем правило «подобное растворяется в подобном», хотя, наверное, не отдаем себе в этом отчета. Мы применяем моющие вещества — молекулы с особой структурой. У них длинный углеводородный хвост (неполярный, как и у масла) присоединен к сильно полярной головке. И, когда такая молекула встречается со слоем жира на поверхности, которую мы моем, хвост проникает внутрь этого слоя, а полярные головки торчат наружу. Эти головки затем связываются с полярными молекулами воды, и жир удаляется с поверхности. Вот за счет чего моющие средства отстирывают одежду и моют посуду.

 

Полосная теория твердотельной проводимости

Электрические свойства твердого тела зависят от того, как электроны составляющих его атомов распределяются по орбитальным уровням при его кристаллизации

 

Ок. 420 до н.э.

 

АТОМНАЯ ТЕОРИЯ СТРОЕНИЯ ВЕЩЕСТВА

ЭЛЕКТРОННАЯ

ТЕОРИЯ

 

ПРОВОДИМОСТИ

 

АТОМ БОРА

 

УРАВНЕНИЕ ШРЁДИНГЕРА

ПОЛОСНАЯ ТЕОРИЯ

ТВЕРДОТЕЛЬНОЙ

ПРОВОДИМОСТИ

Как мы знаем из модели атома бора, электроны в атоме расположены на различных орбитальных уровнях, характеризующихся различной удаленностью от ядра и, соответственно, различной энергией связи электрона с ядром. При образовании кристаллической решетки твердого тела орбиты электронов несколько деформируются и, соответственно, смещаются энергетические уровни удержания электронов на них. Это смещение можно представить себе двояко. с одной стороны, можно заметить, что, находясь в составе твердого тела, электрон не может не подвергаться электрическому воздействию со стороны соседних атомов — он притягивается к их ядрам и отталкивается их электронами. с другой стороны, два электрона, в силу принципа запрета паули, не могут находиться на одной орбите в одном и том же энергетическом состоянии, то есть два любых электрона в любом случае находятся на несколько отличающихся друг от друга энергетических уровнях.

В любом случае можно понять, что при образовании твердого тела в смысле кристаллизации атомов в жесткую структуру каждый энергетический электронный уровень в атомах расщепляется на ряд близких подуровней, объединенных в энергетический слой или полосу. Все электроны, находящиеся в данной энергетической полосе, обладают очень близкими энергиями. На близких к ядру орбитах электроны находятся в связанном состоянии — они неспособны оторваться от ядра, поскольку, хотя теоретически перескок электрона из одного атома в другой — на ту же по энергии орбиту — возможен, все нижние орбиты соседних атомов заняты и реальная миграция электронов между ними невозможна.

Поэтому самой важной с точки зрения теории электрической проводимости является валентная полоса — размытый на подуровни внешний слой электронной оболочки атомов, который у большинства веществ не заполнен (исключение — инертные газы, но они кристаллизуются лишь при сверхнизких температурах). Поскольку внешний слой не насыщен электронами, в нем всегда имеются свободные подуровни, которые могут занять электроны из внешней оболочки соседних атомов. И электроны действительно проявляют удивительную подвижность, хаотично мигрируя от атома к атому в пределах валентного слоя, а в присутствии внешней разности электрических потенциалов они дружно «маршируют» в одном направлении, и мы наблюдаем электрический ток. Именно поэтому нижний слой, в котором имеются свободно перемещающиеся электроны, принято называть проводящим слоем — при этом это даже не обязательно самый верхний (валентный) орбитальный слой электронов в атоме.

Многослойную теорию строения твердого тела можно использовать для объяснения электрических свойств вещества. Если валентный слой твердого тела заполнен, а до следующей незаполненной энергетической полосы далеко, вероятность того, что электрон на нее запрыгнет, близка к нулю. Значит, электроны прочно привязаны к атомам и практически не образуют проводя-

 

щего слоя. соответственно, и под воздействием электрической разности потенциалов с места они не двигаются, и мы имеем изолятор — вещество, не проводящее электрический ток.

Проводник, с другой стороны, как раз представляет собой вещество с частично заполненным валентным слоем, внутри которого электроны имеют значительную свободу перемещения от атома к атому. Наконец, полупроводники — это кристаллические вещества с заполненным валентным слоем, и в этом они подобны изоляторам, однако энергетический разрыв между валентным уровнем и следующим, проводящим энергетическим уровнем у них настолько незначителен, что электроны допрыгивают до него при обычных температурах чисто в силу теплового движения.

 

Постоянная Больцмана

Постоянная Больцмана перекидывает мост из макромира в микромир, связывая температуру с кинетической энергией молекул

 

ок. 420 • АТОМНАЯ ТЕОРИЯ до н.э. СТРОЕНИЯ ВЕЩЕСТВА

1849 •

1798 • МЕХАНИЧЕСКАЯ ТЕОРИЯ ТЕПЛОТЫ

МОЛЕКУЛЯРНО-

КИНЕТИЧЕСКАЯ ТЕОРИЯ

1872 • ПОСТОЯННАЯ БОЛЬЦМАНА

Людвиг Больцман — один из создателей молекулярно-кинети-чЕской теории газов, на которой зиждется современная картина взаимосвязи между движением атомов и молекул с одной стороны и макроскопическими свойствами материи, такими как температура и давление, с другой. В рамках такой картины давление газа обусловлено упругими ударами молекул газа о стенки сосуда, а температура — скоростью движения молекул (а точнее, их кинетической энергией). Чем быстрее движутся молекулы, тем выше температура.

Постоянная Больцмана дает возможность напрямую связать характеристики микромира с характеристиками макромира — в частности, с показаниями термометра. Вот ключевая формула, устанавливающая это соотношение:

Vmv1 = kT,

где m и v — соответственно масса и средняя скорость движения молекул газа, Т — температура газа (по абсолютной шкале Кельвина), а k — постоянная Больцмана. Это уравнение прокладывает мостик между двумя мирами, связывая характеристики атомного уровня (в левой части) с объемными свойствами (в правой части), которые можно измерить при помощи человеческих приборов, в данном случае термометров. Эту связь обеспечивает постоянная Больцмана k, равная 1,38 х 10-23 Дж/К.

Раздел физики, изучающий связи между явлениями микромира и макромира, называется статистическая механика. В этом разделе едва ли найдется уравнение или формула, в которых не фигурировала бы постоянная Больцмана. Одно из таких соотношений было выведено самим австрийцем, и называется оно просто уравнение Больцмана:

S = k log p + b,

где S — энтропия системы (см. второе начало термодинамики), p — так называемый статистический вес (очень важный элемент статистического подхода), а b — еще одна константа.

Всю жизнь людвиг Больцман в буквальном смысле опережал свое время, разрабатывая основы современной атомной теории строения материи, вступая в яростные споры с подавляющим консервативным большинством современного ему научного сообщества, считавшего атомы лишь условностью, удобной для расчетов, но не объектами реального мира. Когда его статистический подход не встретил ни малейшего понимания даже после появления специальной теории относительности, Больцман в минуту глубокой депрессии покончил с собой. Уравнение Больцмана высечено на его надгробном памятнике.

на кафедрах физики и математики университетов Граца, Вены, Мюнхена и Лейпцига. Будучи одним из главных сторонников реальности существования атомов, сделал ряд выдающихся теоретических открытий, проливающих свет на то, каким образом явления на атомном уровне сказываются на физических свойствах и поведении материи.

Постоянная Планка

 

Постоянная Планка определяет границу между макромиром, где действуют законы механики Ньютона, и микромиром, где действуют законы квантовой механики



Поделиться:


Последнее изменение этой страницы: 2016-09-05; просмотров: 662; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.219.236.62 (0.013 с.)