Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Сведения о матрицах, минимально необходимые для изучения ФАСодержание книги
Поиск на нашем сайте
Матрицей называется прямоугольная или квадратная таблица чисел, рассматриваемая безотносительно к тому, что именно представляют собой эти числа и существуют ли между ними какие-то заранее определенные зависимости. Вертикальный ряд чисел, расположенных в матрице одно над другим, называется столбцом, горизонтальный ряд чисел – строкой. Матрица, в которой число строк равно числу столбцов, называется квадратной. В тех случаях, когда нужно обозначить какие-либо элементы матрицы, им приписываются соответствующие индексы, первый из которых указывает номер строки, а второй – номер столбца, в котором находится данный элемент. Схема 1. Квадратная матрица 4Х4
Таким образом, в квадратной матрице, показанной на схеме 1, символ а23 обозначает элемент, находящийся на пересечении второй строки и третьего столбца. Вся матрица обозначается буквой А. С обеих сторон матрица ограничивается двумя вертикальными линиями. О матрице, имеющей т строк и п столбцов, говорят, что ее порядок составляет т х п. Квадратная матрица п х п имеет порядок п. Общий элемент матрицы записывается в виде аij где i (индекс строки) может принимать последовательные значения 1, 2, 3,..., т, а j (индекс столбца) может принимать последовательные значения 1, 2, 3,..., п. Транспонирование матрицы Это важное понятие, часто встречающееся в факторном анализе. Представим себе, что строки матрицы А становятся столбцами, в результате чего возникает новая матрица, которая будет транспонированной по отношению к А. Обозначим новую матрицу А'. Приведем пример транспонирования матрицы
А Схема 2. А/ - транспонированная матрица А
Симметрическая матрица Если матрица А квадратная и совпадает с транспонированной к ней матрицей, то матрица А симметрична. Другими словами, квадратная матрица А симметрична, если А' = А. Пример симметрической матрицы дает схема 3.
Схема 3. Симметрическая матрица
Если элементами матрицы являются коэффициенты корреляции данной совокупности переменных, то эта матрица – симметрическая. В факторном анализе, как правило, встречаются именно такие ситуации. Умножение матриц Матрицы можно умножить друг на друга. Операция умножения часто встречается в факторном анализе и поэтому мы обсудим ее подробнее. Не вдаваясь глубоко в теорию вопроса, ограничимся описанием практических правил умножения матриц. Правила эти гораздо сложнее правил умножения в арифметике. Первое отличие между умножением в арифметике и в матричной алгебре состоит в том, что при умножении матриц не действует закон коммутативности, в соответствии с которым произведение не зависит от порядка, в котором стоят сомножители. Если умножаются матрицы, их произведение в общем случае зависит от этого порядка. Другими словами, А В ¹ В А. Для умножения матрицы А на матрицу В необходимо выполнение следующего условия: матрица А должна иметь столько столбцов, сколько строк в матрице В. Сам процесс умножения исходит из правила «строка на столбец». Это правило означает, что каждый элемент матрицы-произведения представляет собой сумму произведений от умножения элементов строки первой матрицы на соответствующие элементы столбца -второй матрицы. Таким образом, элемент, стоящий на пересечении второй строки и третьего столбца матрицы С, образуется путем последовательного умножения элементов второй строки матрицы А на соответствующие элементы третьего столбца матрицы В и суммирования произведений. В приведенном примере каждый элемент матрицы-произведения представляет собой сумму двух произведений. Если бы матрица А имела 3 столбца, а матрица В – три строки, то каждый элемент матрицы-произведения являлся бы суммой трех произведений. Матрица, представляющая собой произведение двух матриц, будет иметь всегда столько строк, сколько их было в первой матрице, и столько столбцов, сколько их было во второй матрице. Если матрица порядка (р х а) умножается на матрицу порядка (q х г), то их произведение будет иметь порядок (р х г).
|
|||||||
Последнее изменение этой страницы: 2016-08-26; просмотров: 217; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.133.39 (0.009 с.) |