Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Нормативные и расчётные сопротивления бетонаСодержание книги
Поиск на нашем сайте
С точки зрения математической статистики прочность бетона или арматуры является величиной случайной, колеблющейся в определённых пределах. Прочностные характеристики бетона в силу существенной неоднородности его структуры обладают значительной изменчивостью. За нормативное сопротивление бетона осевому сжатию принимают предел прочности осевому сжатию бетонных призм размерами 150´150´600 мм с обеспеченностью 0,95. Эта характеристика контролируется путём проведения испытаний. Теоретическая кривая плотности распределения прочности бетона при испытании большого количества образцов обычно представляет собой кривую, соответствующую нормальному закону распределения случайных величин по Гауссу (рис. 33).
Рис. 33. К установлению значений нормативных и расчётных сопротивлений бетона при сжатии
Под обеспеченностью понимают вероятность попадания случайных величин, выражающих прочность бетона, в интервал от до ∞. Таким образом, на рис. 33 обеспеченность, равная 0,95, выразится заштрихованной площадью, которая определяется как (2.3) Зная значение σ,можно назначить такое значение , частота появления которого была бы заранее задана , (2.4) где 1,64 – показатель надёжности, соответствующий обеспеченности 95%; =0,135 – средний коэффициент вариации призменной прочности бетона, принятый по стране. Если прочность бетона на осевое сжатие контролируется лишь на образцах в форме кубов, то определяют в зависимости от класса бетона по прочности на осевое сжатие В по формуле: (2.5) При отсутствии контроля класса бетона по прочности на осевое растяжение, когда Bt не определяется путём проведения испытаний, для определения нормативного сопротивления бетона осевому растяжению рекомендуется формула: (2.6) Расчётное сопротивление бетона осевому сжатию для расчёта по предельным состояниям первой группы получают по формуле: (2.7) где = 1,3 – коэффициент надёжности по бетону при сжатии. Это расчётное сопротивление соотносится со средней призменной прочностью, полученной при испытании призм до разрушения, как: (2.8) Аналогично определяется расчётное сопротивление бетона осевому растяжению для расчёта по предельным состояниям первой группы (2.9) где – коэффициент надёжности по бетону при растяжении; = 1,3 – при систематическом контроле прочности бетона при осевом растяжении; = 1,5 – при отсутствии такового. Численные значения расчётных сопротивлений и для различных классов бетона даны в табл. 5.1 и 5.2 СП 52-101-2003. Расчётные сопротивления бетона при расчёте по предельным состояниям первой группы назначены в нормах с высокой обеспеченностью равной 0,99865. В необходимых случаях расчетные значения прочностных характеристик бетона умножают на следующие коэффициенты условий работы (gbi), учитывающие особенности работы бетона в конструкции (характер нагрузки, условия окружающей среды и т.д.): а) gb1 – для бетонных и железобетонных конструкций, вводимый к расчетным значениям сопротивлений Rb и Rbt и учитывающий влияние длительности действия статической нагрузки: gb1 = 1,0 – при непродолжительном (кратковременном) действии нагрузки; gb1 = 0,9 – при продолжительном (длительном) действии нагрузки; б) gb2 – для бетонных конструкций, вводимый к расчетным значениям сопротивления Rb и учитывающий характер разрушения таких конструкций. gb2 = 0,9; в) gb3 – для бетонных и железобетонных конструкций, бетонируемых в вертикальном положении при высоте слоя бетонирования свыше 1,5 м, вводимый к расчетному значению сопротивления бетона Rb. gb3 = 0,85. Влияние попеременного замораживания и оттаивания, а также отрицательных температур учитывают коэффициентом условий работы бетона γb4 ≤ 1,0. Для надземных конструкций, подвергаемых атмосферным воздействиям окружающей среды при расчетной температуре наружного воздуха в холодный период минус 40оС и выше, принимают коэффициент γb4 = 1,0. В остальных случаях значения коэффициента принимают в зависимости от назначения конструкции и условий окружающей среды согласно указаниям СП «Бетонные и железобетонные конструкции, подвергающиеся технологическим и климатическим температурно-влажностным воздействиям». Наступление предельных состояний второй группы не столь опасно как первой, так как это обычно не влечёт за собой аварий, обрушений, жертв, катастроф. Поэтому расчётные сопротивления бетона для расчёта конструкций по предельным состояниям второй группы устанавливают при = = 1, т.е. принимают их равными нормативным значениям (2.10) Как правило, здесь и = 1.
|
||||
Последнее изменение этой страницы: 2016-08-26; просмотров: 596; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.142.130.242 (0.01 с.) |