Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Г.М. Грушевский, О.О. Иваев,↑ Стр 1 из 9Следующая ⇒ Содержание книги
Поиск на нашем сайте
Г.М. Грушевский, О.О. Иваев, С.К. Романов, В.В. Ходыкин Железобетонные конструкции Утверждено редакционно-издательским советом университета в качестве учебного пособия
Нижний Новгород - 2006
ББК 38.53 Ж 51
Грушевский Г.М., Иваев О.О, Романов С.К., Ходыкин, В.В. Железобетонные конструкции: учебное пособие. – Н.Новгород: Нижегород. гос. архит.-строит. ун-т, 2006. – 88 с. ISBN 5-87941-455-8
В пособии описаны прочностные и деформативные свойства бетона, стальной арматуры и железобетона, а также экспериментальные основы теории сопротивления железобетона. Пособие предназначено для студентов специальности 270115 – «Экспертиза и управление недвижимостью» при подготовке к дисциплинарным испытаниям по курсу «Железобетонные конструкции».
ББК 38.53
ISBN 5-87941-455-8
© коллектив авторов, 2006 © ННГАСУ, 2006
ВВЕДЕНИЕ
Сущность железобетона. Железобетоном называется сочетание бетона и арматурных изделий (сеток, каркасов, отдельных стержней и т.д.), уложенных в теле бетона в соответствии со статической работой конструкции. Такое сочетание материалов целесообразно, так как стальные стержни, поставленные в растянутой зоне элемента, прекрасно восполняют основной недостаток бетона как конструктивного строительного материала. Известно, что бетон, обладая высокой прочностью на сжатие, в 10...20 раз хуже сопротивляется растяжению, что практически не позволяет использовать его как конструктивный материал для растянутых и изгибаемых элементов несущих конструкций. Железобетонными конструкциями здесь называются несущие элементы зданий и сооружений, изготавливаемые из железобетона, и сочетания этих элементов. Стальные стержни, имеющиеся в железобетонных конструкциях, в дальнейшем будут называться арматурой. Работая совместно с бетоном, железобетонные конструкции хорошо сопротивляются как растяжению, так и сжатию. Идея железобетона состоит в том, чтобы в железобетонных конструкциях использовать бетон преимущественно в работе на сжатие, а арматуру – в работе на растяжение. Этим неограниченно расширяется область применения бетона как конструктивного строительного материала. Идею железобетона можно достаточно хорошо проиллюстрировать следующим примером. Бетонная балка (без арматуры), лежащая на двух опорах и подверженная поперечному изгибу, испытывает растяжение продольных волокон в зоне, находящейся ниже нейтрального слоя (рис. 1, а). Такая балка обладает малой несущей способностью вследствие слабого сопротивления бетона растяжению. Она разрушается внезапно (хрупко) при возникновении первой же трещины в бетоне растянутой зоны. Прочность бетона на сжатие в момент, предшествующий разрушению, в бетонной балке сильно недоиспользуется (напряжения в нормальных сечениях в сжатой зоне в этот момент едва достигают 5... 10 % от прочности бетона на сжатие). Такая же балка (рис. 1, б), снабженная небольшим по сравнению с площадью поперечного сечения балки количеством продольной арматуры, размещенной в растянутой зоне, может иметь несущую способность, до 20 раз превосходящую несущую способность бетонной балки. Характер разрушения балки при не слишком большом насыщении ее сечений арматурой плавный, постепенный (пластичный). В такой конструкции может быть полностью использована прочность бетона в работе на сжатие, а арматуры – на растяжение. Арматуру, имеющую весьма высокое сопротивление сжатию, можно также использовать для усиления бетона сжатой зоны.
Арматура может быть не только в виде стальных стержней. В качестве арматуры иногда используют нити, канаты, пряди и др. из стекловолокна и даже деревянные или бамбуковые рейки. Однако наиболее широко сейчас применяется стальная арматура. Основой совместной работы бетона и арматуры (т.е. одинаковые деформации их смежных волокон) в железобетоне является выгодное природное сочетание некоторых важных физико-механических свойств этих материалов, а именно: 1) при твердении бетона между ним и поверхностью стальной арматуры возникают значительные силы сцепления, вследствие чего в железобетонных элементах под нагрузкой оба материала деформируются совместно; 2) плотный бетон (с достаточным содержанием цемента – от 200...250 до 300...400 кг/мЗ и более) надежно защищает заключенную в нём стальную арматуру от коррозии, а также предохраняет ее от непосредственного 3) сталь и бетон обладают близкими по величине коэффициентами температурного (линейного) расширения, поэтому при изменении температуры в пределах от –50°С до +50°С в обоих материалах возникают несущественные начальные (внутренние) напряжения и скольжения арматуры в бетоне не наблюдается; α st = 0,000012°С-1; α bt = 0,00001° С-1. Достоинства и недостатки железобетона. К основным достоинствам железобетона, обеспечивающим ему широкое применение в строительстве, относятся: - огнестойкость; - долговечность; - высокая механическая прочность при сжатии; - хорошая сопротивляемость сейсмическим и другим динамическим воздействиям; - возможность возводить конструкции любой формы; - малые эксплуатационные расходы на содержание зданий и сооружений (по сравнению с металлическими и деревянными конструкциями); - хорошая сопротивляемость атмосферным воздействиям; - высокая гигиеничность, способность задерживать радиоактивные излучения; - почти повсеместное наличие крупных и мелких заполнителей, в больших количествах идущих на приготовление бетона. Все эти факторы делают железобетон доступным к применению практически на всей территории страны. Затраты электроэнергии на производство железобетонных конструкций значительно ниже по сравнению со стальными и каменными. Недостатки железобетона: - большая плотность; - высокая звуко- и теплопроводность; - трудоёмкость переделок и усилений; - необходимость выдержки конструкции в опалубке до приобретения ею требуемой прочности; - появление трещин вследствие усадки и силовых воздействий. Многие из этих недостатков могут быть полностью или частично устранены путём применения бетонов на пористых заполнителях, специальной обработки (пропаривания, вакуумирования и т.п.), предварительного напряжения. При общей оценке железобетона как строительного материала следует иметь в виду, что отмеченные выше недостатки малозначительны по сравнению с его достоинствами. Это привело к тому, что за исторически короткий промежуток времени (примерно 150 лет) железобетон занял доминирующее положение в строительстве. Нелишне отметить, что на изготовление железобетонных конструкций расход стали в 2,5...3,5 раза меньше, а на изготовление настилов, труб, бункеров, силосов и т. п. железобетонных конструкций расходуется стали примерно в 10 раз меньше, чем на аналогичные стальные конструкции. К тому же железобетонные конструкции более долговечны и огнестойки. Поэтому замена металлических конструкций на железобетонные (там, где это возможно) позволяет экономить дефицитный металл и имеет важное народно-хозяйственное значение. Из железобетона выполняют многие конструкции, в которых большая масса не является недостатком, а иногда даже и полезна, например, в гидротехнических сооружениях (бетонные плотины, стенки шлюзов), подпорных стенках, фундаментах. Области применения железобетона. Для современного капитального строительства железобетон является строительным материалом № 1. Он применяется в самых разнообразных отраслях строительства, находя в каждой из них подходящие области применения. Из железобетона проектируются и строятся многие здания и сооружения промышленного, гражданского и транспортного назначения. Железобетон широко применяют в гидротехническом (плотины, дамбы, гидроэлектростанции) и энергетическом строительстве (главные корпуса тепловых и атомных электростанций, атомных реакторов), а также нередко в судостроении (например, из железобетона изготовляют корпуса барж) и машиностроении (для изготовления станин и опорных частей тяжёлых станков и прессов). Из железобетона возводят жилые дома, общественные здания различного назначения, сельскохозяйственные постройки и различные инженерные сооружения (дымовые трубы, телевизионные и водонапорные башни, резервуары и т.д.). В транспортном строительстве железобетонные конструкции применяют для возведения мостов, водопропускных труб, путепроводов, метрополитенов, тоннелей на железных и автомобильных дорогах, подпорных стенок. Их употребляют также для покрытия дорог и аэродромов. Многие здания и сооружения на железнодорожном транспорте построены с применением железобетонных конструкций. К ним относятся железнодорожные вокзалы, локомотивные и вагоноремонтные депо, пассажирские платформы. При строительстве железных дорог широко применяют железобетонные шпалы, железобетонные опоры контактной сети и другие железобетонные конструкции. В горной промышленности железобетон используется для надшахтных сооружений и крепления подземных выработок. В последние десятилетия железобетон стали использовать при возведении платформ для добычи нефти со дна морей в зоне шельфа и для устройства саркофагов и скафандров для захоронения радиоактивных отходов и хранения радиоактивных материалов. По способу возведения различают: железобетонные конструкции сборные, изготовляемые преимущественно на заводах стройиндустрии и затем монтируемые на строительных площадках; монолитные, полностью возводимые на месте строительства; сборно-монолитные, в которых рационально сочетается использование сборных железобетонных элементов заводского изготовления и монолитного бетона. Монолитный железобетон с каждым годом получает всё большее применение по всей стране (каркасные здания с безбалочными перекрытиями). Прогнозы показывают, что в нынешнем столетии железобетон останется основным строительным материалом для несущих и ограждающих конструкций зданий и сооружений различного назначения. Краткие исторические сведения о возникновении и развитии железобетона. Развитие производства строительных конструкций, в том числе и железобетонных, неразрывно связано с условиями материальной жизни общества. Появление железобетона во второй половине XIX века совпало по времени с периодом ускоренного развития промышленности, торговли и транспорта. В этот период возникла потребность в строительстве большого числа фабрик, заводов, мостов, портов и других сооружений. Как следствие этого увеличилась потребность в строительных материалах. С одной стороны это привело к вздорожанию уже известных материалов, а с другой – послужило толчком к поиску новых строительных материалов. К тому же для строительства мостов и многих промышленных зданий с дорогим и сложным оборудованием стала ощущаться острая потребность в новых огнестойких, дешевых и надежных в эксплуатации строительных конструкциях. Это привело к появлению нового строительного материала – железобетона, в котором удачно сочетались лучшие качества каменных материалов и стали. В 1999 г. исполнилось 150 лет со времени изобретения железобетона. Хотя на звание родины этого материала претендовали Англия и США, приоритет все-таки следует отдать Франции. Французы подчеркнули этот факт, отпраздновав столетие железобетона в 1949 г. Появление железобетона вызвало революционные преобразования в строительстве, влияние которых на современную цивилизацию можно сравнить лишь с влиянием таких великих открытий как автомобиль, радио, ядерная реакция. В прошлом веке железобетон получил широкое распространение как материал, имеющий обширную сырьевую базу, экологически безопасный, наиболее подходящий для изготовления различных строительных изделий, конструкций и систем. Весь короткий исторический путь развития железобетонных конструкций (по сравнению с конструкциями из дерева, камня и стали) можно условно разделить на 4 периода. Первый период возникновения железобетона (1849-1885 гг.) характеризуется появлением первых конструкций из армированного бетона. В этот период железобетонные конструкции появились практически одновременно в нескольких высокоразвитых странах (Франции, Англии, США и Германии), где уже производился цемент и стальной прокат. Первым документально зафиксированным изделием из железобетона явилась лодка, построенная в 1849 г. Жаном Луи Ламбо, адвокатом по профессии. В 1854 г. штукатур из Ньюкасла Вильям Уилкинсон получил патент на конструкцию огнестойкого перекрытия, состоящего из железных полос, укладываемых на расстоянии 50 см друг от друга и заливаемых бетоном. Причём для повышения прочности перекрытия в пролете полосы укладывались в нижней части сечения, а над опорами отгибались в верхнюю часть. В. Уилкинсон был первым, кто понял принцип рационального армирования железобетона. В 1867 г. французский садовник Жозеф Монье получил патент на изготовление кадок для цветов из железа и цемента. Длительное время, особенно в России, Ж. Монье считался изобретателем железобетона. Он получил во многих странах множество разнообразных патентов на конструкции из железобетона (шпалы, трубы, балки и даже мосты). В 1880 г. патент на железобетон был получен им и в России. На развитие железобетона в Англии большое влияние оказал французский инженер Франсуа Генебик. Его фирма выиграла несколько подрядов на сооружение различных зданий. Им были построены мельницы, силосы для хранения зерна, водонапорные башни, портовые сооружения и др. В 1864 г. Франсуа Куанье построил во Франции первую церковь из железобетона. В 1861 г. он опубликовал брошюру «Применение бетона в строительном искусстве», где впервые указал на то, что бетон и стальные стержни в нем работают совместно. Около 20 лет Ф. Куанье строил железобетонные сооружения во Франции и в других странах. В России впервые железобетон был использован в 1879 г. инженером Д.Ф. Жаринцевым при возведении стен зданий в г. Батуми. В 1885 г. в Германии инж. Вайс и проф. Баушингер провели первые научные опыты по определению прочности и огнестойкости железобетонных конструкций, сохранности стали в бетоне, сил сцепления арматуры с бетоном и пр. Тогда же впервые инж. Кёнен высказал предположение, затем подтверждённое опытами, что арматура должна располагаться в тех частях конструкции, где можно ожидать растягивающие усилия. Исследования покрытий Царскосельского дворца показали, что русские мастера ещё в 1802 г. применяли армированный бетон, однако не считали, что получили новый строительный материал, и не патентовали его. Второй период – с 1886 по 1917 год – называют периодом освоения железобетона в строительстве. В России с 1886 г. железобетон стал применяться для устройства междуэтажных перекрытий по стальным балкам. Много таких перекрытий встречается в Петербурге в зданиях старой постройки. В России развитие железобетонных конструкций шло под влиянием зарубежного опыта и отечественной практики. Начало широкому использованию железобетона в России положили проведенные в Петербурге в 1891 г. под руководством профессора Института путей сообщения Н.А. Белелюбского публичные испытания различных железобетонных конструкций (плит, балок, труб, резервуаров, арочного моста пролетом 17 м и др.). Эти испытания выявили большие преимущества железобетона перед другими строительными материалами. В 1904 году при участии проф. Н.А. Белелюбского в г. Николаеве был построен первый в мире железобетонный морской маяк высотой 40,2 м со стенами толщиной 10 см вверху и до 20 см внизу (рис. 2).
В 1900 г. на Парижской всемирной выставке железобетон был официально признан надежным строительным материалом. Но уже с 1898 г. железобетонные конструкции нередко применялись в России при строительстве железнодорожных сооружений, шоссейных дорог, в промышленном и гражданском строительстве. За несколько лет было построено более тридцати железобетонных путепроводов и мостов. Первые в мире ТУ (технические условия) на железнодорожные сооружения из железобетона МПС России утвердило в 1908 г. Первая конструкция железобетонной шпалы была предложена еще в 1880 г. во Франции, но начало практического применения железобетонных шпал, как в нашей стране, так и за границей относится к 1902–1903 гг. Первые железобетонные шпалы в России были изготовлены в 1903 г. и испытаны в лаборатории С.-Петербургского Института путей сообщения. Часть этих шпал была уложена на одной из станций б. Финляндской железной дороги. Вслед за этим в период с 1903 по 1927 год попытки применения железобетонных шпал на наших дорогах предпринимались неоднократно. Однако широкое применение таких шпал началось только в послевоенный период. В 1908 году проф. А.Ф. Лолейт запроектировал и построил в Москве четырехэтажный склад молочных продуктов с безбалочными перекрытиями. С этого времени железобетон в России начал постепенно вытеснять сталь и дерево при выполнении несущих конструкций зданий и сооружений. Значительные по размаху и глубине исследования несущей способности и трещиностойкости железобетонных конструкций были проведены в конце XIX и начале XX столетий в Германии под руководством профессоров Мёрша, Баха, Графа, Эмпергера. Полученные результаты были положены в основу разработки теории железобетона и нормативных документов по проектированию таких конструкций. В третий период широкого применения железобетона в нашей стране (1918–1945 гг.) особенно большое распространение он получил в промышленном и гидротехническом строительстве. После октябрьской революции 1917 г. произошли коренные изменения в экономике страны. Сразу после окончания гражданской войны перед руководством страны встают задачи восстановления разрушенного хозяйства и выполнения всевозрастающих планов капитального строительства. Решение этих проблем в то время было бы невозможно без широкого применения железобетона. В годы первых пятилеток вследствие больших объемов строительства и тенденции экономии стали, необходимой для нужд машиностроения, железобетон постепенно занимает доминирующее положение в капитальном строительстве. Широкое распространение получают монолитные неразрезные балочные перекрытия, многопролетные и многоярусные рамы (этажерки), арки, элеваторы, силосы, бункеры. В двадцатые годы в стране начиналось строительство крупных электростанций с широким применением бетона и железобетона (Волховская, Свирская, Днепровская ГЭС). В 1928 г. у нас в стране появились первые сборные железобетонные конструкции, которые затем стали все шире применяться в промышленном и гражданском строительстве. В это же время начинают применяться тонкостенные пространственные конструкции: купола (первый тонкостенный купол диаметром 28 м был возведен в Москве для планетария в 1928 г., оперный театр в Новосибирске в 1934 г. был перекрыт куполом диаметром 55,5 м, который имел толщину оболочки всего 8 см), складки, цилиндрические оболочки, шатры и т. п. В этот период начиналось проектирование и строительство Московского метро. Появление сталей и бетонов высокой прочности позволило реализовать на практике в 1928–1930 гг. идею создания предварительно напряженных железобетонных конструкций. Этого удалось впервые добиться талантливому французскому ученому и инженеру Эжену Фрейссине. Предварительно напряженные железобетонные конструкции обладают повышенной трещиностойкостью и жесткостью. Кроме того, они экономичны за счет уменьшения размеров сечений. Это позволило значительно увеличить пролеты зданий и сооружений, перекрываемых железобетонными конструкциями. Первые теоретические основы расчета железобетонных конструкций и принципов их конструирования были созданы трудами первых исследователей железобетона Консидером, Генебиком (Франция), Кёненом и Мёршем (Германия). К концу XIX века в общих чертах сложилась теория расчета железобетонных конструкций по допускаемым напряжениям, основанная на принципах сопротивления упругих материалов. Как выяснилось в дальнейшем, она имела крупные недостатки. Бурный рост применения железобетона вызвал необходимость совершенствования теории. Большой вклад в ее дальнейшую разработку внесли русские и советские ученые: А.Ф. Лолейт (теория расчета по разрушающим усилиям, которая применялась в СССР с 1938 по 1955 год), В.М. Келдыш, А.А. Гвоздев, С.М. Крылов (разработка метода расчета по предельным состояниям, теория расчета статически неопределимых конструкций по методу предельного равновесия), В.И. Мурашев (теория трещиностойкости и жесткости железобетона), И.И. Улицкий, А.Е. Шейкин, П.И. Васильев, С.В. Александровский (исследования по теории ползучести бетона), К.В. Михайлов, Н.М. Мулин (разработка и исследование новых видов арматуры), В.В. Михайлов, Г.И. Бердичевский, С.А. Дмитриев, А.П. Коровкин (разработка и исследование предварительно напряженных железобетонных конструкций), С.С. Давыдов (расчет и конструирование подземных сооружений) и многие другие. Четвертый период широкого применения железобетона в нашей стране начался в 1946 г. и продолжается по настоящее время. После окончания Второй мировой войны весьма резко возросла потребность в новом строительстве и положение железобетона среди других строительных материалов стало доминирующим. Железобетон стал основой не только промышленного и гидротехнического, но и жилищного, теплоэнергетического, транспортного, дорожного, сельскохозяйственного строительства. Широкое применение сборного железобетона совершило переворот в строительной технике. Появились заводские технологии изготовления железобетонных конструкций. Претерпели большие изменения конструктивные формы зданий и сооружений в связи с переходом на полносборное строительство. Создана обширная номенклатура типовых сборных железобетонных изделий для массового применения (балки, фермы, панели, фундаментные блоки, дорожные и аэродромные плиты покрытия и др.). Использование сборного железобетона позволило вести строительство круглогодично и в огромных масштабах. Если объём применения сборных конструкций в СССР в 1955 г. составил 12 %, то в 1990 г. он составлял уже около 60 % от общего объёма производства железобетона. Дальнейшим развитием теории железобетона стал созданный в нашей стране и применяемый с 1955 г. единый метод расчета всех строительных конструкций по предельным состояниям, разработанный профессорами Н.С. Стрелецким, В.М. Келдышем, А.А. Гвоздевым и др. Выполненные теоретические и экспериментальные исследования, накопленный опыт строительства и достижения в области улучшения качества строительных материалов позволили за исторически короткий срок значительно повысить уровень применения железобетонных конструкций. Об огромных возможностях железобетона как строительного материала наглядно свидетельствуют нижеприведенные здания и сооружения: 1. Башня Московского телецентра в Останкино высотой 537 м с 385-метровой нижней предварительно напряженной частью из монолитного железобетона (рис. 3 б).
2. Торговый центр в г. Челябинске, перекрытый без промежуточных опор пологой сборно-монолитной оболочкой с размерами в плане 102x102 м. 3. Крытый рынок в г. Минске, перекрытый пологой сборно-монолитной оболочкой из аглопоритобетона с размерами в плане 103x103 м. Существуют реальные возможности для перекрытия такими оболочками плана 150x150 м и более. В частности, Проектный институт №1 Министерства строительства разработал в свое время проект оболочки, очерченной по круговой поверхности переноса, для покрытия стоянки машин в г. Новосибирске с размерами в плане 150x150 м (рис. 4). 4. В Париже оболочкой, представляющей в плане правильный треугольник со стороной 218 м, перекрыт выставочный павильон Дворца Техники. Оболочка опирается на три точки и перекрывает площадь 30000 м2. Толщина ее всего 100 мм. Поперечное сечение волнистое. Высота гофра 600 мм (рис. 5). 5. В Сиэтле построен ребристый железобетонный купол пролётом 220 м. 6. Бетон уверенно вытесняет сталь из высотного строительства: в США и во многих других странах построены сотни небоскрёбов с монолитным каркасом. Для таких зданий применяют бетон высокой прочности. В 1998 г. в Чикаго закончилось строительство небоскреба «Миглин Вайтер» (125 этажей, Н = 610 м) с железобетонным каркасом.
7. Скульптура Родина-Мать в г. Волгограде. 8. Из железобетона возводятся дымовые трубы высотой до 420 м. В настоящее время железобетон является основным конструктивным материалом в строительстве, так как он обладает высокой прочностью, долговечностью, стойкостью к воздействию высоких температур и агрессивных сред, способностью твердеть и наращивать прочность под водой, допускает изготовление конструкций самой разнообразной формы и не требует практически эксплуатационных расходов. Около 85% всех несущих строительных конструкций, многие из которых монтируют из сборных элементов, выполняют сейчас из железобетона. Такое положение сохранится, видимо, и в обозримом будущем. Однако в последнее десятилетие произошла некоторая переоценка ценностей в отношении применения сборного и монолитного железобетона. В целом, с учетом значительного повышения удельного веса транспортных расходов, необходимо добиваться взвешенного соотношения между сборным и монолитным строительством за счет совершенствования технологии изготовления конструкций из монолитного железобетона и развития сборно-монолитных конструктивных решений. Кроме того, монолитное строительство требует меньших затрат на создание производственной базы (на 40...45%). Итогом обобщения научных исследований и опыта проектирования явились действующие ныне нормы проектирования бетонных и железобетонных конструкций СНиП 52-01-2003 «Бетонные и железобетонные конструкции. Основные положения».
Бетон
Общие сведения
Бетон как материал для железобетонных конструкций должен обладать определёнными, наперёд заданными физико-механическими свойствами: необходимой прочностью, хорошим сцеплением с арматурой, достаточной плотностью (непроницаемостью) для защиты арматуры от коррозии и др. Деформативность бетона не должна быть слишком большой. Для изготовления бетонных и железобетонных конструкций предусмотрены следующие виды бетонов: - тяжёлый, средней плотности свыше 2200 до 2500 кг/м3 (на плотных заполнителях); - мелкозернистый, средней плотности свыше 1800 кг/м3 (на мелких заполнителях); - лёгкий, плотной и поризованной структуры (на пористых заполнителях); - ячеистый, автоклавного и неавтоклавного твердения и др. В качестве плотных заполнителей применяют щебень из дроблёных горных пород (песчаника, гранита, диабаза и др.) и кварцевый песок. Пористые заполнители могут быть естественными (перлит, пемза, ракушечник) или искусственными (керамзит, шлак и т.п.). В зависимости от вида пористых заполнителей различают керамзитобетон, шлакобетон, перлитобетон и т.д.
Структура (строение) бетона В настоящее время в строительстве применяется много различных видов бетонов. Но для выполнения несущих конструкций зданий и сооружений наиболее широко используется тяжёлый бетон на цементном вяжущем и крупном плотном заполнителе из песчаника, гранита, диабаза и т. п. материалов со средней плотностью в пределах 2200 < ρ ≤ 2500 кг/м3. Его свойства и рассматриваются ниже. Структура бетона оказывает большое влияние на его прочность и деформативность. Чтобы уяснить это, вспомним схему физико-химического процесса получения бетона. Для приготовления бетона берут в определённых пропорциях заполнители (песок, щебень или гравий), вяжущее (цемент) и воду. Кроме того, для придания бетону различных свойств (например, морозостойкости) дополнительно в небольших количествах могут вводиться различные добавки. Смесь заполнителей и вяжущего заливают водой. После затворения этой смеси начинается химическое взаимодействие между частицами цемента и водой (гидратация), в результате чего образуется цементное тесто. При перемешивании такой смеси цементное тесто обволакивает частицы заполнителей и, постепенно затвердевая, превращает всю массу в монолитное твёрдое тело, способное нести нагрузку. Следовательно, бетон представляет собой неоднородный искусственный каменный материал. Следует обратить внимание на то, что даже сам затвердевший цементный раствор (цементный камень) имеет также неоднородную структуру и состоит из упругого кристаллического сростка, растущего с течением времени, и наполняющей его вязкой студенистой массы (геля), количество которой постепенно уменьшается. Таким образом, структуру бетона можно представить в виде пространственной решетки из цементного камня (включающего кристаллический сросток, гель и большое количество пор и капилляров, содержащих воздух, водяной пар и воду), в котором хаотично расположены зёрна песка и щебня (рис. 6). Рис. 6. Структура бетона:1 – цементный камень; 2 – щебень; 3 – песок; 4 – поры, заполненные воздухом и водой Процесс твердения бетона при благоприятных температурно-влажност-ных условиях может длиться годами и носит затухающий характер. Этот процесс является экзотермическим, т.е. он идёт с выделением большого количества тепла. Существенно важным фактором, влияющим на структуру и прочность бетона, является водоцементное отношение W/С – отношение веса воды к весу цемента в единице объёма бетонной смеси. Для успешного протекания реакции схватывания цемента и твердения цементного камня необходимо, чтобы W/C ≥ 0,2. Однако для достижения хорошей удобоукладываемости бетонной смеси приходится принимать W/C = 0,35...0,7, т.е. вводить воду с избытком. Излишек воды в дальнейшем постепенно испаряется, и в цементном камне образуются многочисленные каналы (называемыми ещё порами или капиллярами), заполненные химически несвязанной водой, водяным паром и воздухом, которые оказывают давление на стенки. Это снижает прочность бетона и увеличивает его деформативность. Общий объём пор в затвердевшем цементном камне достаточно велик и составляет при обычных условиях твердения бетона примерно 25...40% от его видимого объёма. Причём, размеры поперечного сечения пор весьма малы: 60...80% от общего количества всех пор имеют размеры поперечного сечения, не превышающие 0,001 мм. С уменьшением W/C пористость цементного камня уменьшается, а прочность бетона повышается. Кроме того, бетоны из жёстких смесей (W/C = 0,3...0,4) при прочих равных условиях обладают меньшей деформативностью, требуют меньшего расхода цемента. Процессы постепенного уменьшения объёма геля, кристаллообразования, испарения избыточной воды, происходящие в бетоне в течение длительного времени, обусловливают ряд его специфических свойств: изменение прочности во времени, усадку, ползучесть.
Прочность бетона Прочность бетона определяется его сопротивлением различным силовым воздействиям – сжатию, растяжению, изгибу, срезу. Один и тот же бетон имеет разное временное сопротивление при различных силовых воздействиях. Исследования показали, что теории прочности, предложенные для других материалов, к бетону не применимы. Поэтому количественная оценка прочности бетона в настоящее время основывается на осреднённых опытных данных, которые принимаются в качестве исходных при проектировании любых бетонных и железобетонных конструкций. Отсутствие закономерности в расположении отдельных частиц, составляющих бетон, приводит к тому, что при испытании образцов, изготовленных из одной и той же бетонной смеси, получают различные показатели временного сопротивления – разброс прочности. Кроме того, необходимо помнить, что механические свойства цементного камня и заполнителей существенно отличаются друг от друга; к тому же структура бетона изобилует дефектами, которыми, помимо пор, являются пустоты около зёрен заполнителя, возникающие при твердении бетона. Прочность бетона на осевое сжатие считается основной его характеристикой, так как наиболее ценным качеством бетона является его высокая прочность на сжатие. В лабораторных условиях она может определяться на образцах в форме кубов, призм или цилиндров. У нас в стране для оценки прочности бетона при сжатии используют преимущественно кубы. Так как бетон представляет собой неоднородный искусственный каменный материал, то для получения достоверных сведений о его прочности в соответствии с действующими стандартами испытывают партию образцов и определяют (средний предел прочности на осевое сжатие бетонных кубов с ребром 150 мм) и (средний предел прочности на осевое сжатие эталонных бетонных образцов призм). Кубиковая прочность. При осевом сжатии кубы (как и другие сжатые образцы) разрушаются вследствие разрыва бетона в поперечном направлении. Наклон трещин обусловлен влиянием сил трения, которые развиваются на контактных поверхностях между подушками пресса и опорными гранями куба (рис. 7, а). Силы трения, направленные внутрь, препятствуют свободным поперечным деформациям бетона вблизи опорных поверхностей и тем самым повышают его прочность на сжатие (создаётся эффект обоймы). Удерживающее влияние сил трения по мере удаления от торцевых граней куба уменьшается, поэтому после разрушения куб приобретает форму четырех усеченных пирамид, сомкнутых малыми основаниями. Если при осевом сжатии куба удаётся устранить или значительно уменьшить (с помощью смазки контактных поверхностей, например, парафином или картонных прокладок) влияние сил опорного трения, то характер его разрушения и прочность изменяются (рис. 7, б).
Рис. 7. Характер разрушения бетонных кубов: а – при наличии трения по опорным плоскостям; б – при отсутствии трения; 1 – силы трения; 2 – трещины; 3 – смазка
В этом случае поперечные деформации проявляются свободно и трещины разрыва становятся вертикальными, параллельными действию сжимающей силы, а временное сопротивление бетона сжатию существенно уменьшается. Согласно стандарту кубы испытывают без смазки контактных поверхностей и при отсутствии прокладок. Опытами установлено, что прочность бетона одного и тог
|
||||||||||||||
Последнее изменение этой страницы: 2016-08-26; просмотров: 2238; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.129.195.45 (0.02 с.) |