Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Автоволны в органах и тканях. Их основные свойства.↑ Стр 1 из 11Следующая ⇒ Содержание книги
Поиск на нашем сайте
Электромагнитные поля. 1) низкочастотное электрическое (Е) и магнитное (В) поле (частоты ниже 103 Гц); 2) радиоволны сверхвысоких частот (СВЧ) (частоты 109- 1010 Гц и длина волны вне тела 3-60 см); 3) инфракрасное (ИК) излучение (частота 1014 Гц, длина волны 3-10 мкм); 4) оптическое излучение (частота 1015 Гц, длина волны порядка 0,5 мкм). Низкочастотные поля создаются главным образом при протекании физиологических процессов, сопровождающихся электрической активностью органов: кишечником (~1 мин), сердцем (характерное время процессов порядка 1 с), мозгом (-0,1 с), нервными волокнами (~10 мс). Спектр частот, соответствующих этим процессам, ограничен сверху значениями, не превосходящими ~1кГц. В СВЧ и ИК-диапазонах источником физических полей является тепловое электромагнитное излучение. Таблица. Характеристики электромагнитных полей, создаваемых телом человека
Акустические поля. Диапазон собственного акустического излучения ограничен со стороны длинных волн механическими колебаниями поверхности тела человека (0,01 Гц), со стороны коротких волн ультразвуковым излучением, в частности, от тела человека регистрировали сигналы с частотой порядка 10 МГц. Существуют три диапазона акустического поля 1) низкочастотные колебания (частоты ниже 103 Гц); 2) кохлеарную акустическую эмиссию (КАЭ) - излучение из уха человека (v ~103 Гц); 3) ультразвуковое излучение (v ~ 1-10 МГц). Низкочастотное излучение создается физиологическими процессами: дыхательными движениями, биением сердца, током крови в кровеносных сосудах и некоторыми другими процессами, сопровождающимися колебаниями поверхности человеческого тела в диапазоне приблизительно 0,01- 103 Гц. Это излучение в виде колебаний поверхности можно зарегистрировать контактными, либо бесконтактными методами, однако его практически невозможно измерить дистанционно с помощью микрофонов. Это связано с тем, что идущие из глубины тела акустические волны практически полностью отражаются обратно от границы раздела «воздух-тело человека» и не выходят наружу в воздух из тела человека. Коэффициент отражения звуковых волн близок к единице из-за того, что плотность тканей тела человека близка к плотности воды, которая на три порядка выше плотности воздуха. Источником акустического изучения мегагерцового диапазона является тепловое акустическое излучение - полный аналог соответствующего электромагнитного излучения. Оно возникает вследствие хаотического теплового движения атомов и молекул человеческого тела. Интенсивность этих акустических волн, как и электромагнитных, определяется абсолютной температурой тела. Акустические поля человека Поверхность человеческого тела непрерывно колеблется. Эти колебания несут информацию о многих процессах внутри организма: дыхательных движениях, биениях сердца и температуре внутренних органов. Низкочастотные механические колебания с частотой ниже нескольких килогерц дают информацию о работе легких, сердца, нервной системы. Регистрировать движения поверхности тела человека можно дистанционными или контактными датчиками в зависимости от решаемой задачи. Например, в фонокардиографии для измерения акустических шумов, создаваемых сердцем, используют микрофоны, устанавливаемые на поверхности тела. Электрические сигналы с датчиков усиливают и подают на регистрирующее устройство либо ЭВМ и по их форме и величине делают заключения о движениях тех или иных участков тела. Кохлеарная акустическая эмиссия. Из уха животных и человека могут излучаться звуки - это явление называют кохлеарной акустической эмиссией, поскольку их источник локализован в улитке (cochlea) органа слуха. Эти звуки можно зарегистрировать микрофоном, расположенным в ушном канале. Обнаружен ряд видов кохлеарной акустической эмиссии, среди которых выделяется так называемая спонтанная эмиссия и акустическое эхо. Спонтанная эмиссия - это самопроизвольное непрерывное излучение звука из ушей человека. Уровень звукового давления достигает 20 дБ, т.е. в 10 раз выше порогового значения 2 • 10 5 Па, которое способно воспринимать ухо человека на частоте 1 кГц. Частоты эмиссии у разных лиц отличаются и лежат в диапазоне 0,5-5 кГц, излучение обладает высокой монохроматичностью. Эмиссия наблюдается в среднем у 25% мужчин и у 50% женщин. Спонтанная эмиссия не имеет никакого отношения к «звону в ушах» - субъективному ощущению чисто нервного происхождения. Кохлеарная акустическая эмиссия связана с деятельностью так называемых наружных волосковых клеток, расположенных в кортиевом органе улитки. В ответ на приходящую звуковую волну они изменяют свои размеры и вызывают во внутреннем ухе механические колебания, которые способны, распространяясь в обратном направлении, выходить наружу через среднее ухо. Биофизический механизм быстрых изменений геометрии клеток пока неясен, его быстродействие в сто раз выше, чем у мышц. Из всех видов кохлеарной акустической эмиссии применение в медицине пока что нашло явление акустического эха -излучения звуков из уха спустя некоторое время после подачи в ухо короткого звукового сигнала. Оно используется для диагностики слуха новорожденных в первые несколько дней жизни, когда невозможно использовать обычные методы аудиометрии. Отсутствие эха является тревожным симптомом не только глухоты, но и зачастую сопряженных с ней поражений других отделов центральной нервной системы. Ранняя диагностика позволяет уже с первых дней жизни принять активные меры и в значительной степени ослабить неблагоприятные последствия этого недуга. Акустическое излучение ультразвукового диапазона. Тело человека является источником теплового акустического излучения с различными частотами. Обычно акустические волны подходят из глубины тела, отражаются от его поверхности и уходят обратно, однако пьезодатчик, контактирующий с телом, может их зарегистрировать. Особенность акустических волн, распространяющихся в теле человека, в том, что, чем выше частота, тем они сильнее затухают. Поэтому из глубины человеческого тела с расстояний 1 - 10 см могут дойти только тепловые ультразвуковые волны мегагерцового диапазона с частотами не выше 0,5-10 МГц. Интенсивность этих волн пропорциональна абсолютной температуре тела. Для измерения интенсивности теплового акустического излучения используют прибор - акустотермометр. С помощью этого прибора можно, например, измерить температуру тела человека, погруженного в воду. Существенной областью применения акустотермографии станет измерение глубинной температуры в онкологии, при процедурах, связанных с нагревом опухолей в глубине тела с помощью разных методов: ультравысокими и сверхвысокими частотами, ультразвуком, лазерным излучением. Акустотермография - потенциально единственный неинвазивный метод, способный обеспечить высокое пространственное разрешение за приемлемое время измерения порядка одной минуты. Электрическое поле человека существует на поверхности тела и снаружи, вне его. Электрическое поле вне тела человека обусловлено главным образом трибозарядами, то есть зарядами, возникающими на поверхности тела вследствие трения об одежду или о какой-либо диэлектрический предмет, при этом на теле создается электрический потенциал порядка нескольких вольт. Электрическое поле непрерывно меняется во времени: во-первых, происходит нейтрализация трибозарядов - они стекают с высокоомной поверхности кожи с характерными временами ~ 100 - 1000 с; во-вторых, изменения геометрии тела вследствие дыхательных движений, биения сердца и т.п. приводят к модуляции постоянного электрического поля вне тела. Еще одним источником электрического поля вне тела человека является электрическое поле сердца. Приблизив два электрода к поверхности тела, можно бесконтактно и дистанционно зарегистрировать такую же кардиограмму, что и традиционным контактным методом (см. гл. 5). Отметим, что этот сигнал во много раз меньше, чем поле трибозарядов. В медицине бесконтактный метод измерения электрических полей, связанных с телом человека, нашел свое применение для измерения низкочастотных движений грудной клетки. При этом на тело пациента подается переменное электрическое напряжение частотой -10 МГц, а несколько антенн-электродов подносят к грудной клетке на расстоянии 2-5 см. Антенна и тело представляют собой две обкладки конденсатора. Перемещения грудной клетки меняет расстояние между обкладками, то есть емкость этого конденсатора (см. гл. 1) и, следовательно, емкостной ток, измеряемый каждой антенной. На основании измерений этих токов можно построить карту перемещений грудной клетки во время дыхательного цикла. В норме она должна быть симметрична относительно грудины. Если симметрия нарушена и с одной стороны амплитуда движений мала, то это может свидетельствовать, например, о скрытом переломе ребра, при котором блокируется сокращение мышц с соответствующей стороны грудной клетки. Контактные измерения электрического поля в настоящее время находят наибольшее применение в медицине: в кардиографии и электроэнцефалографии. Основной прогресс в этих исследованиях обусловлен применением вычислительной техники, в том числе персональных компьютеров. Эта техника позволяет, например, получать так называемые электрокардиограммы высокого разрешения (ЭКГ ВР). Как известно, амплитуда сигнала ЭКГ не более 1 мВ, а ST-сегмента еще меньше, причем сигнал маскируется электрическим шумом, связанным с нерегулярной мышечной активностью. Поэтому применяют метод накопления - то есть суммирование многих последовательно идущих сигналов ЭКГ. Для этого ЭВМ сдвигает каждый последующий сигнал так, чтобы его R-пик был совмещен с R-пиком предыдущего сигнала, и прибавляет его к предыдущему, и так для многих сигналов в течение нескольких минут. При этой процедуре полезный повторяющийся сигнал увеличивается, а нерегулярные помехи гасят друг друга. За счет подавления шума удается выделить тонкую структуру ST-комплекса, которая важна для прогноза риска мгновенной смерти. В электроэнцефалографии, используемой для целей нейрохирургии, персональные компьютеры позволяют строить в реальном времени мгновенные карты распределения электрического поля мозга с использованием потенциалов от 16 до 32 электродов, размещенных на обоих полушариях, через временныеинтервалы порядка нескольких мс. Построение каждой карты включает в себя четыре процедуры: 1) измерение электрического потенциала во всех точках, где стоят электроды; 2) интерполяцию (продолжение) измеренных значений на точки, лежащие между электродами; 3) сглаживание получившейся карты; 4) раскрашивание карты в цвета, соответствующие определенным значениям потенциала. Получаются эффектные Цветные изображения. Такое представление в квазицвете, когда всему диапазону значений поля от минимального до максимального ставят в соответствие набор цветов, например от фиолетового до красного, сейчас очень распространено, поскольку сильно облегчает врачу анализ сложных пространственных распределений. В результате получается последовательность карт, из которой видно, как по поверхности коры перемещаются источники электрического потенциала. Персональный компьютер позволяет строить карты не только мгновенного распределения потенциала, но и более тонких параметров ЭЭГ, которые давно апробированы в клинической практике. К ним в первую очередь относится пространственное распределение электрической мощности тех или иных спектральных составляющих ЭЭГ (, , , , и -ритмы) (табл. III на форзаце). Для построения такой карты в определенном временном окне измеряют потенциалы в 32 точках скальпа, затем по этим записям определяют частотные спектры и строится пространственное распределение отдельных спектральных компонент. Карты , , и ритмов сильно отличаются. Нарушения симметрии таких карт между правым и левым полушарием может быть диагностическим критерием в случае опухолей мозга и при некоторых других заболеваниях. Таким образом, в настоящее время разработаны бесконтактные методы регистрации электрического поля, которое создает тело человека в окружающем пространстве, и найдены некоторые приложения этих методов в медицине. Контактные измерения электрического поля получили новый импульс в связи с развитием персональных ЭВМ - их высокое быстродействие позволило получать карты электрических полей мозга. Магнитное поле тела человека создается токами, генерируемыми клетками сердца и коры головного мозга. Оно исключительно мало — в 10 млн. — 1 млрд. раз слабее магнитного поля Земли (табл. 12.2). Для его измерения используют квантовый магнитометр. Его датчиком является сверхпроводящий квантовый магнитометр (СКВИД), на вход которого включены приемные катушки. Этот датчик измеряет сверхслабый магнитный поток, пронизывающий катушки. Чтобы СКВИД работал, его надо охладить до температуры, при которой появляется сверхпроводимость, т. е. до температуры жидкого гелия (4 К). Для этого его и приемные катушки помещают в специальный термос для хранения жидкого гелия - криостат, точнее, в его узкую хвостовую часть, которую удается максимально близко поднести к телу человека. В последние годы после открытия «высокотемпературной сверхпроводимости» появились СКВИДы, которые достаточно охлаждать до температуры жидкого азота (77 К). Их чувствительность достаточна для измерения магнитного поля сердца. Таблица 12.2. Индукция (В) магнитного поля организма человека и окружающей среды
Как видно из табл. 12.2, магнитное поле, создаваемое организмом человека, на много порядков меньше, чем магнитное поле Земли, его флуктуации (геомагнитный шум) или поля технических устройств. Чтобы от них отстроиться, измеряют не само магнитное поле, а его градиент, то есть его изменение в пространстве. В каждой точке пространства полная индукция В магнитного поля есть сумма индукций полей помехи Вп и сердца В, а именно В = Вп + Вс, причем Вп > Вс. Поле помех: Земли, металлических предметов (труб отопления), проезжающих по улице грузовиков и т.д. - медленно изменяется по пространству, в то время как магнитное поле сердца или мозга спадает быстро при удалении от тела. По этой причине индукции магнитного поля помех Вп1 и Вп2, измеренные непосредственно на поверхности тела и на расстоянии, скажем, 5 см от него, практически не отличаются: Вп1 = Вп2, а индукции поля Вс1 и Вс2, создаваемого сердцем в этих же точках, отличаются почти в 10 раз: В,» В „. Поэтому, если вычесть друг из друга два значения измеряемой индукции магнитного поля В1 и В2, то разностный сигнал В1 - В2 Вс1 - Вс2 практически не содержит вклада от помехи, а сигнал от сердца лишь слабо исказится. Для реализации описанной простейшей схемы - градиометра первого порядка - можно использовать две параллельные друг другу катушки, расположенные одна за другой на расстоянии в несколько сантиметров и включенные навстречу друг другу. В настоящее время используют более сложные конструкции - градиометры второго порядка (их датчик содержит более двух катушек). Эти устройства позволяют измерять магнитоэнцефалограммы непосредственно в клинике. Магнитокардиограмма и динамическая магнитная карта человека. Источник магнитного поля сердца человека тот же, что и электрического, - перемещающаяся граница области возбуждения миокарда. Различают два способа исследования этого поля: (1) измерение магнитокардиограмм (МКГ) и (2) построение динамической магнитной карты (ДМК). В первом случае измерение проводят в какой-то одной точке над сердцем, в результате получают зависимости величины магнитного поля от времени, зачастую совпадающие по форме с традиционными электрокардиограммами. Чтобы построить динамическую магнитную карту, необходимо измерить набор МКГ в разных точках над сердцем. Для этого пациента на специальной немагнитной кровати перемещают вблизи неподвижного датчика. Поле измеряется в области 20 х 20 см2 по сетке из 6 х 6 элементов, т.е. всего в 36 точках. В каждой точке записывают несколько периодов сердечного цикла, чтобы усреднить записи, затем перемещают пациента так, чтобы измерить следующую точку. Затем в определенные моменты времени, отсчитываемые от R-пика, строят мгновенные динамические магнитные карты. Каждая ДМК соответствует определенной фазе сердечного цикла. В магнитокардиографии (МКГ) и магнитоэнцефалографии (МЭГ) используют две основные формы представления полученных результатов. Традиционный способ - это построение изолиний, то есть проведение семейства кривых, соответствующих одному и тому же значению индукции магнитного поля и различающихся друг от друга на постоянное значение, например, 5 пТ (1 пТ = Ю-12 Т): 0 пТ, 5 пТ, 10 пТ и т.д. Основные медицинские применения измерений магнитных полей тела человека - это магнитокардиография (МКГ) и магнитоэнцефалография (МЭГ). Достоинством МКГ по сравнению с традиционной электрокардиографией (ЭКГ) является возможность локализовать источники поля с высокой точностью порядка 1 см. Это связано с тем, что динамические магнитные карты позволяют оценить координаты токового диполя. Механизм формирования магнитного поля показан на схеме. Под поверхностью поля на глубине d расположен проводник, по которому течет ток 1. Тогда создается поле с индукцией В, с одной стороны от проводника поле выходит из плоскости, с другой — сходит в нее. Измеряют перпендикулярную плоскости компоненту поля ВZ. Показаны изолиниимагнитного поля в плоскости измерений, затемненная область соответствует области входящих в нело линий, 1 — расстояние между экстремумами поля по оси х. Длинные проводники с током в теле человека отсутствуют. Поэтому лучшей аппроксимацией реальных источников магнитного поля является модель токового диполя короткого участка проводника с током, который ориентирован на схеме. Создаваемое токовым диполем поле имеет наибольшее и наименьшее значение на том же удалении от своей оси, что и для длинного проводника, однако вдоль оси диполя оно быстро спадает в обе стороны, так что изолинии поля вблизи экстремумов напоминают окружности. Таким образом, регистрация магнитных полей человека позволяет получить новую информацию, дополнительную к той, которую дают измерения электрических полей.
Наиболее яркую информацию о распределении температуры поверхности тела человека и ее изменениях во времени дает метод динамического инфракрасного тепловидения.
Тепловидение в биологии и медицине. Наиболее яркий результат применения тепловидения в биологии (это обнаружение и регистрация пространственного распределения температуры коры головного мозга животных - родился фактически новый раздел физиологии - термоэнцефалоскопия). Инфракрасное тепловидение тела человека дает информацию о температуре верхних слоев кожи - рогового слоя эпидермиса и некоторых подлежащих слоев общей толщиной около 100мкм, поскольку, как показано специальными измерениями, электромагнитные волны ИК-диапазона затухают, пройдя в биологических тканях расстояние всего около 100 мкм. Температура этого слоя определяется балансом тепла за счет его отдачи в окружающую среду и притока за счет крови, притекающей из теплового ядра организма. Поэтому фактически ИК-тепловидение это способ оценить кожный кровоток в различных участках тела. Наиболее распространенным применением ИК-тепловидения в медицине является визуализация кровоснабжения нижних конечностей. Если кровоснабжение в них нарушено, то температура дистальных участков резко снижена. Регистрируя размер областей со сниженной температурой, можно определить степень выраженности заболевания, а также эффективность терапевтических мероприятий. Динамическое тепловидение позволяет отследить изменения температуры тела при различных дозированных воздействиях - функциональных пробах. Например, после снятия одежды кожа пациента оказывается в ином температурном режиме, и происходит длительная (15-20 мин) адаптация. Динамика измерения температуры тела в этот период служит критерием нормального функционирования системы терморегуляции. Плавное монотонное изменение температуры - обычная нормальная реакция, отсутствие динамики - свидетельство неблагополучия. Метод динамического тепловидения открыл возможности визуализировать реакцию организма в зонах Захарьина-Геда. В прошлом веке русский врач Захарьин и австрийский ученый Гед обнаружили, что определенные участки поверхности тела сигнализируют о неблагополучии в соответствующем ему внутреннем органе. В частности, при сердечной недостаточности боль ощущается с левой стороны и отдает в левую руку. Однако границы этих областей удается оконтурить с большим трудом, так как приходится опираться лишь на субъективные реакции пациентов. Использование тепловидения основано на том, что в случае болевой реакции какого-либо органа на функциональную пробу возникает сосудистая реакция в соответствующей зоне Захарьина-Геда - это приводит к изменению локальной температуры кожи. Теорема Планшереля. Пусть входной сигнал е(t) имеет Фурье образ E(ν). А функция импульсного отклика линейной системы h(t)↔H(ν). Тогда Ф-образ свертки во временном представлении равен произведению Ф-образов. TFe(t)*h(t)= E(ν) H(ν) e(t)*h(t) ↔E(ν) H(ν) Аналогично свертка в частотном представлении соответствует Ф-образ во временном представлении E(ν) H(ν) ↔e(t)*h(t) Доказательство: 1) Запишем операцию свертка: (1) (Свертка – математическая операция, отражающая процесс выходного сигнала)
2) Фурье представлнение исходного сигнала: (2) 3) Функция импульсного отклика в системе
(3)
4) Подставим (3), (2) в (1). Используем δ- функцию Дирака:
(4) 5) Получаем (5)
Из этого следует, Фурье образ выходного сигнала =S(t) = произведению вх.сигнала и Ф-образа импульсного отклика.
6) Свойства δ- функции Дирака: δ (x)=0 везде, кроме одной точки х =0:
f(x) δ(x-a)dx =f(a) Используется в любом устройстве, дающем результат в виде операции свертка. Применяется в математических составляющих приборов (ЭКГ, ЭЭГ и др.) Дискретизация. Современные мед.приборы – цифровые, все измерения производятся в дискретные промежутки времени. Математически записываются процедурой дискретизации. Математическая дискретизация производится с помощью гребневой функции Дирака. ШТе= δ(t-kTe) (1) ШТе – гребневая функция Дирака.
Ф-образ гребневой ф-ии Дирака TFШТе=Fe δ(ν-nFe)=Ште (2) Следовательно, гребневая функция Дирака является гребневой ф-ей.
Пусть непрерывный сигнал х(t) имеет Фурье образ Х(ν), т.е. х(t)↔Х(ν). В результате дискретизации получаем сигнал: (3) Te - шаг дискретизации На основании теоремы Планшереля Ф-образ дискретизированного сигнала равен свертке Ф-образов исходного сигнала и Ф-образа гребневой функции Дирака
ШТе(ν) ↔ ШТе (4) Выполняем операцию свертка. Меняем порядок, интегрируем (5) => спектр дискретизируемого сигнала представляет собой периодическую функцию с периодом Fe.
Обратное ДПФ. (1) - Дискретный Ф-образ(спектр). В спектр входят и «+» и «-» частоты. - обладает свойствами четности - мнимая часть- нечетная. Используя четность и нечетность выражения (1) можно упростить. Вычислим Re и Im части: Действительная часть восстановленного сигнала (2): (2) Все физические устройства определяют спектр только для «+» частот. В формулу (2) входят значения 1…N для «+» частот. Применение: Хранятся на значениях pix, для сжатия изображения (формат изображения jpeg). Решающие функции. Решающие или разделяющие функции используются для построения правил (решений), позволяющих определить принадлежность образов к некоторому классу. В мед. практике классификация и распознавание образов прим-ся при анализе рентгенограмм, томограмм и др. мед.диагностических изображений, в экспертных системах анализа электрокардиограмм, энцефалограмм. Существуют различные представления для решающих функций.
В виде линейной суммы: g(х) = w0 + w1х1 + w2х2 + … + wnхn ={ }, i=1,…,n. wi – весовые коэффициенты, каждый из которых характеризует вклад составляющей хi. Введем вектор = {w0, w1, w2, …, wn}, а к координатам вектора в пространстве признаков добавим нулевую координату х0 ≡ 1: = {х0≡1, х1, х2,.., хn}. Тогда линейную решающую функцию можно записать в виде скалярного произведения: g() = (, ) Решающее правило, сформулированное с помощью g():
P()= єА1, g() ≥ 0; єА2, g() < 0.
Если пространство признаков , i=1,…,K, то решающее правило имеет вид:
P()= є , () > 0; є , () < 0. Необходимо иметь К решающих функций , i=1,…,K, ()=0, следовательно, решение об отнесении объекта i рассматривается отдельно. Кроме линейных используются квадратичные решающие функции: g()= , а также функции, построенные на поленомах различной степени = .
Лечение. Широко используются электрические, механические, электромагнитные и другие воздействия. Использование соответствующих приборов требует специальной подготовки и знаний. Прямой контроль за лечением (автоматизация) с помощью приборов еще не реализован. Однако выполнение простых заданий, таких, как назначение лекарств в ряде случаев компьютеризировано. Общая схема лечебно-диагностического комплекса имеет вид:
Источником стимулов является блок – стимулятор. Преобразование сигналов реакций в электрические сигналы осуществляется с помощью датчиков. Преобразованные сигналы поступают в блок обработки, предназначенный для их усиления, фильтрации и анализа с помощью ЭВМ, а также для устранения помех. Затем информация передается в блок вывода, записывающее устройство, т.е. в случае необходимости может быть сохранена или передана на расстояние. Обработанные данные поступают в блок памяти и контроля за лечением.
Компьютерная томография. Обычное рентгеновское изображение не способно дать информацию о менее плотных структурах, если они находятся за более плотными. Связано это с тем, что рентгеновская фотография – есть проекция на пленку лучей, проходящих через организм человека. Примером может служить обычная рентгенограмма грудной клетки, на которой плотные структуры костей затрудняют получении информации о менее плотных легочных. В 1973 году группой инженеров во главе с Хаунефилдом был создан первый компьютерный томограф, предназначенный для исследования головного мозга. Томографией называют методику рентгенологического исследования, с помощью которой можно получить изображение слоя, лежащего на определенной глубине. Компьютерной томографией называется метод реконструкции истинного изображения распределения плотности с помощью определенных вычислительных операций над данными, полученными в результате прохождения воздействия через тело. Компьютерная томография основана на решении системы уравнений с вовлечением тысяч коэффициентов затухания для каждого элемента по множеству направлений. Вдоль заданного направления полное затухание связано с суммой индивидуальных коэффициентов затухания. Для одиночного элемента: для ряда элементов: В рентгеновском диапазоне излучения экспоненциальный закон выполняется с высокой степенью точности, поэтому разработанные математические алгоритмы были впервые применены именно для рентгеновской компьютерной томографии. Существует несколько типов компьютерных томографов. Томографы первого поколения. Осуществляли сканирование объекта одиночным коллимированным рентгеновским пучком, а излучение, прошедшее через объект, регистрировали одним детектором, жестко связанным с излучателем. Система излучатель детектор совершала поступательные и вращательные движения, состоящие из 180 линейных сканирований, поворачиваясь поворачиваясь после каждого линейного сканирования на 1 градус. В качестве детектора в томографах первого поколения использовался осциллятор на основе кристаллов йодистого натрия или ФЭУ. Томографы второго поколения. Система излучатель-детектор также совершает вращательно-поступательные движения относительно исследуемого объекта, однако вместо одного рентгеновского луча, сканирование осуществляется расходящимся пучком, состоящим из нескольких (от 3 до 52) коллимированых лучей и того же числа детекторов. Совокупность сигналов со всех детекторов дает информацию о целом наборе независимых проекций. Время сканирования одного слоя удалось уменьшить до 10 секунд, в результате чего стала возможна томография грудной клетки, т.к. возможно задержать дыхание до 10 секунд. Томографы третьего поколения. Сканирование осуществляется веерным пучком, полностью перекрывающим исследуемый объект, поэтому система излучатель-детектор совершает только вращательные движения. Число детекторов – больше 300. время сканирования 2-5с. Томографы четвертого поколения. Стол с пациентом плавно движется, в то время, как агрегат с рентгеновской трубкой вращается непрерывно. Число детекторов увеличено до 1000, они являются неподвижными и образуют кольцо. Такой метод называется винтовым или спиральным, позволяет получать изображение со скоростью более 5 кадров/секунду. Также используются спаренные детекторы, которые позволяют сканировать 2 среза, удаленных на расстояние 1см друг от друга. Такие быстрые системы получения изображения сделали возможной динамическую КТ ангиографию сердца, показывающую изменение процесса в работающем сердце.
ЯМР-томография. ЯМР в конденсированном веществе был открыт после Второй Мировой войны двумя группами физиков в США независимо друг от друга. ЯМР нашёл более широкое применение, чем ПМР. Как известно атомное ядро имеет положительный заряд. Наряду с зарядом ядра очень многих атомов обладают собственным механическим угловым моментом. - гидромагнитное соотношение. При приложении к веществу постоянного магнитного поля возникает магнитный момент, который описывается уравнением . Магнитный момент может прецессировать собственной частотой равной ω, которая зависит от величины магнитного момента. Поэтому частота магнитной
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-08-25; просмотров: 505; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.123.10 (0.013 с.) |