Популяционные волны, изоляция в популяциях людей 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Популяционные волны, изоляция в популяциях людей



Популяция – это группа особей одного вида, имеющих общий генофонд, способных к свободному скрещиванию, длительно населяющих одну территорию и относительно изолированных от особей других видов.

По количеству особей популяции бывают большие и малые. Большие популяции человека содержат более 4 тысяч особей. Демы и изоляты – это субпопуляции человека. Численность особей в демах составляет 1500-4000 человек, внутригрупповые браки в них 80-90%, приток генов из других групп 1-2%. Демы – относительно кратковременные и нестойкие объединения особей. Изоляты – малые популяции – содержат до 1500 человек, внутригрупповые браки – свыше 90%, приток генов из других групп – менее 1%.

Популяции человека характеризуются демографическими показателями: рождаемостью и смертностью (разница между ними составляет прирост населения), возрастной структурой, родом занятий, экономическим положением общества, экологическим состоянием среды. Популяции человека имеют возрастающую численность, в них снижено действие естественного отбора, происходит разрушение изолятов, наблюдается сходство условий жизни людей в разных климатических зонах.

Большие популяции называются панмиксными, или случайными, так как в них происходит ничем не ограниченное скрещивание особей или выбор партнера для брака.

Малые популяции называются непанмиксными, или неслучайными. В них имеются определенные ограничения скрещивания особей или выбора партнера для брака.

Большая по численности популяция приближается к идеальной, которая характеризуется:

· Бесконечно большой численностью;

· Изоляцией от других популяций вида;

· Полной панмиксией;

· Отсутствием мутаций и естественного отбора.

В природе такие популяции не встречаются, но большие по численности популяции человека по своим характеристикам близки к идеальным.

 

4.8. Генетико-автоматические процессы (дрейф генов) в популяциях человека, их значение в медицине

Генетико-автоматические процессы- вероятностные процессы, определяющие изменение частоты разных аллелей в популяции. В больших, свободно скрещивающихся популяциях в отсутствие отбора и давления мутаций соотношение аллелей, независимо от их абсолютной исходной частоты, должно сохраняться во всех поколениях. Однако в реальных, ограниченных по численности популяциях частота генов не остаётся постоянной не только под давлением мутаций и отбора, но и в силу случайных отклонений. Детальный анализ Г.-а. п. был проведён советскими генетиками Н. П. Дубининым (1931), Н. П. Дубининым и Д. Д. Ромашовым (1932), английским — Р. Фишером (1931) и американским — С. Райтом (1931). Случайные колебания частоты аллелей популяции связаны с тем, что распределение аллелей между гаметами и комбинирование гамет в зиготе — вероятностные процессы. Г.-а. п. оказывают несистематический эффект, т.к. частота аллелей в разных поколениях может повышаться или понижаться. В малых популяциях или в популяциях, которые распадаются под действием изоляционных механизмов на отдельные подгруппы, может происходить чисто случайная стабилизация аллелей (гомозиготы) или их элиминация; в результате довольно быстро проявляются новые стабилизированные комбинации генов. Наиболее отчётливо Г.-а. п. проявляются при возникновении новых изолированных популяций. Например, в секте меннонитов (Ланкастер, штат Пенсильвания, США), насчитывающей около 8000 человек, значителен процент карликов с многопалостью (13% меннонитов гетерозиготны по гену, который в гомозиготном состоянии обусловливает появление таких карликов); это объясняется тем, что члены секты вступают в брак только между собой, а такая изоляция способствует появлению гомозиготных индивидуумов. В больших популяциях Г.-а. п. не могут обусловить такой стабилизации или элиминации аллелей, т.к. влияние этих процессов компенсируется за счёт разных факторов в последующих поколениях или в разных подразделениях популяции. Теория Г.-а. п. объяснила генетические последствия изоляции, судьбу рецессивных мутаций на уровнях малых концентраций и эволюцию популяций по нейтральным признакам. Г.-а. п. объясняют многие расовые различия человека, возникшие без действия отбора. Наряду с термином «Г.-а. п.» широко используется термин «дрейф генов», предложенный С. Райтом. Советский генетик С. С. Четвериков, подчёркивая роль вероятностно-статистических закономерностей при дрейфе генов, предлагал назвать это явление генетико-стохастическими процессами.

Формы эволюции групп.

Филетическая эволюция — это изменения, происходящие в одном филогенетическом стволе, эволюционирующем во времени как единое целое. Реконструированы филогенетические ряды слона, лошади и других организмов, в которых можно наблюдать постепенное нарастание количества и степени выраженности признаков, характерных для современных форм

Дивергентная эволюция заключается в образовании на основе одной предковой группы двух или нескольких производных. Она приводит к дифференциации более крупных таксонов на более мелкие, например классов на отряды, родов на виды.

Как филетическая, так и дивергентная эволюция протекают на общей генетической базе, поэтому между организмами сохраняется более или менее выраженное генотипическое и морфофункциональное сходство.

Сопоставление филогенеза в разных группах позволяет выделить и некоторые общие закономерности соотносительной эволюции. Так, при попадании в одну и ту же среду обитания двух или более филогенетических групп неродственных организмов у них обычно проявляется конвергенция признаков. При этом сходные экологические задачи они решают сходным образом. Конвергентные адаптации возникают в этом случае на разной генетической основе, затрагивают в первую очередь поверхностные признаки, не распространяясь на общий план строения и наиболее существенные черты организации соответствующих групп. Примером конвергентной эволюции являются форма тела и особенности локомоции в воде у акуловых рыб, водных пресмыкающихся — ихтиозавров, костистых рыб, пингвинов, ластоногих и китообразных млекопитающих, внутреннее строение которых полностью соответствует особенностям, характерным для классов, к которым они относятся.

Параллельная эволюция (параллелизм) - одна из форм эволюции групп, по которой два родственные таксоны, которые создались на основе дивергенции от общего предка и развивались сначала в разных условиях и в разных направлениях, но дальше попали в одно и то же экологическую среду и понесли филитичнои эволюции в подобном направлении. Например, в олигоцене саблезубость возникла в махайродонтов (Hoplophoneus) и псевдосаблезубых настоящих кошек (Dinictus).

Конвергентная эволюция - одна из форм эволюции групп, которая заключается в независимом образовании подобных признаков (преимущественно внешних) в неродных организмов, попавших в подобной среде. Явление конвергенции (схождения признаков) противоположное явление дивергенции (расхождения признаков). При конвергентной эволюции образуют ся аналогичные органы - органы, выполняющие одинаковую функцию, но различные по происхождению и планом строения (крылья насекомого, птицы и летучей мыши; жабры речного рака и рыбы).

Сетчатая эволюция - одна из форм эволюции групп, которая происходит на основе синтезогенезу (объединения). Различают следующие виды сетчатой эволюции: гибридизация, симбиогенез, трансдукция. Примеры гибридизации рассматривались при видообразовании. Симбиогенез состоит в том, что новая форма возникает на основе объединение двух неродственных организмов. Примером может быть возникновение лишайников на основе объединения водоросли и гриба. Трансдукция – перенос генетического материала из генома одних организмов в другие. Эта форма сетчатой эволюции изучена на вирусах бактерий (бактериофаги) и иллюстрирует явление горизонтального переноса готового блока генов бактериофагом от одного вида бактерий к другому.

Типы эволюции групп.

В зависимости от того, изменяется ли уровень организации в эволюционирующих группах, выделяют два основных типа эволюции: аллогенез и арогенез.

При аллогенезе у всех представителей данной группы сохраняются без изменения основные черты строения и функционирования систем органов, благодаря чему уровень организации их остается прежним. Аллогенная эволюция происходит в пределах одной адаптивной зоны — совокупности экологических ниш, различающихся в деталях, но сходных по общему направлению действия основных средовых факторов на организм данного типа. Интенсивное заселение конкретной адаптивной зоны достигается благодаря возникновению у организмов идиоадаптаций — локальных морфофизиологических приспособлений к определенным условиям существования.

Арогенез — такое направление эволюции, при котором у некоторых групп внутри более крупного таксона появляются новые морфофизиологические особенности, приводящие к повышению уровня их организации. Эти новые прогрессивные черты организации называют ароморфозами. Ароморфозы позволяют организмам заселять принципиально новые, более сложные адаптивные зоны. Так, арогенез ранних земноводных был обеспечен появлением у них таких основных ароморфозов, как пятипалые конечности наземного типа, легкие и два круга кровообращения с трехкамерным сердцем. Завоевание адаптивной зоны с более сложными для жизни условиями (наземной по сравнению с водной, воздушной по сравнению с наземной) сопровождается активным расселением в ней организмов с появлением у них локальных идиоадаптаций к различным экологическим нишам.

Правила эволюции групп.

Правило необратимости эволюции (Л.Долло, 1893) гласит, что эволюция - процесс необратимый и группа не может вернуться к прежнему состоянию, уже осуществленному в ряду его предков.
Правило прогрессирующей специализации (Ш.Депере, 1876) гласит, что группа, вступившая на путь спе-циализации, как правило, в дальнейшем развитии будет идти по пути все более глубокой специализации.
Правило происхождения от неспециализированных предков (Э.Коп, 1896) гласит, что обычно новые крупные группы берут начало не от специализированных предковых групп, а от сравнительно неспециали-зированных.
Правило адаптивной радиации (Г.Ф.Осборн, 1902) гласит, что филогенез любой группы сопровождается разделением группы на ряд отдельных филогенетических стволов, которые расходятся в разных адаптивных направлениях от некоего исходного среднего состояния. (В основе лежит принцип дивергенции, описанный Ч.Дарвином в 1859 году).
Правило чередования главных направлений эволюции. (И.И.Шмальгаузен, 1939) Арогенная эволюция че-редуется с периодами аллогенной эволюции во всех группах.

Правило усиления интеграции биологических систем (И.И.Шмальгаузен, 1961) можно сформулировать так: биологические системы в процессе эволюции становятся все более интегрированными, со все более развитыми регуляторными механизмами, обеспечивающими такую интеграцию.

 



Поделиться:


Последнее изменение этой страницы: 2016-08-16; просмотров: 552; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.213.110.162 (0.006 с.)