Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Нарушения гемодинамики и микроциркуляции при хснСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Снижение насосной функции сердца при ХСН закономерно ведет к следующим нарушениям кровообращения: 1. Уменьшение ударного и минутного объема сердца, снижение АД, несмотря на рефлекторное увеличение ЧСС; 2. Увеличение ОПСС вследствие рефлекторного сужения периферических артериол; 3. Несостоятельность сердца как насоса ведет к скоплению избыточных объемов крови в венозном отделе сосудистого русла, т.е. к формированию венозного застоя (поэтому ХСН часто называют хронической застойной сердечной недостаточностью). Венозное давление превышает 16 см вод. ст. Застойные явления в малом круге кровообращения вызывают одышку, развитие отека легких, цианоза. Застойные явления в большом круге кровообращения проявляются тканевыми и полостными отеками, набуханием шейных вен, увеличением печени, цианозом, нарушением функции почек, желудочно-кишечного тракта и др. 4. Нарушения гемодинамики неизбежно ведут к снижению перфузии органов и тканей, нарушению микроциркуляции и развитию гипоксии. Клинические проявления хронической сердечной недостаточности Клинически синдром сердечной недостаточности рассматривается как комплекс функциональных расстройств, обусловленных нарушением насосной функции сердца. Диагностически значимыми являются более ранние признаки: одышка, быстрая утомляемость, тахикардия и отеки. Другие появляются позднее. Одышка – это наиболее частое и раннее проявление сердечной недостаточности, как правило, левожелудочковой, что следует рассматривать как компенсаторный механизм, направленный на повышение оксигенации крови в легких за счет увеличения минутной альвеолярной вентиляции и на борьбу с гипоксией. Каким образом это происходит? Застой крови в сосудах малого круга кровообращения нарушает функцию внешнего дыхания, что снижает рО2 в альвеолах, увеличивается рСО2, и накапливается молочная кислота. Гипоксемия, гиперкапния, дыхательный ацидоз возбуждают хеморецепторы, что рефлекторно возбуждает дыхательный центр и вызывает одышку. Тахикардия выявляется вначале только при физической нагрузке, а затем и в покое. Различают два патогенетических фактора: 1. Рефлекс Бейнбриджа с растягивающихся вследствие венозного застоя устьев полых вен.
2. Активация симпатоадреналовой системы, положительное хронотропное действие катехоламинов (цель – поддержать МОС за счет увеличения ЧСС). Отеки. Вначале имеются «скрытые» отеки (до 5 литров), а потом явные тканевые (стопы, голени, половые органы, передняя брюшная стенка, поясница) и полостные отеки (асцит, гидроперикард, плевральный выпот). Это зависит от причины и тяжести хронической сердечной недостаточности. Возможные механизмы: 1. Снижение насосной функции сердца вызывает венозный застой и увеличение гидростатического давления в капиллярах (более 20-25 мм рт.ст.). 2. Снижение онкотического давления плазмы крови из-за алиментарного дефицита белка, снижения белоксинтезирующей функции печени, альбуминурии. 3. Увеличение проницаемости сосудистой стенки из-за гипоксемии, ацидоза и снижения скорости кровотока. 4. Снижение клубочковой фильтрации из-за уменьшения почечного кровотока при сохранной или усиленной реабсорбции. 5. Гиперальдостеронизм из-за активации РААС и недостаточной инактивации альдостерона в печени. 6. Усиление секреции вазопрессина в рамках активации РААС. Цианоз кожи и слизистых оболочек. Вначале выявляется акроцианоз (руки, ноги, мочки ушей, губы), затем диффузный цианоз, холодный на ощупь. Возможные механизмы: - замедление скорости кровотока в растянутых капиллярах и расширенных венулах, застой, усиление экстракции кислорода и повышение содержания в крови восстановленного гемоглобина; - нарушение оксигенации крови в легких. Увеличение печени возникает из-за переполнения кровью печеночных вен и капилляров. При длительном застое нарушается функция печени, затем развиваются морфологические изменения – цирроз печени и, как следствие, синдром портальной гипертензии (гепатоспленомегалия, асцит, «голова медузы»). Набухание шейных вен в обе фазы дыхания из-за венозного застоя. Нарушение функции желудочно-кишечного тракта также связано с застойными явлениями, нарушением трофики органов пищеварения и выражается снижением тонуса и перистальтики желудка и кишечника, атрофией пищеварительных желез, нарушением всасывания. Клинически проявляется диспепсией и ведет к развитию «сердечной кахексии». Нарушение функции почек. Гемодинамические сдвиги при ХСН, а также увеличение секреции альдостерона и АДГ, что ведет к снижению фильтрации и усилению резорбции, т.е. к развитию почечной недостаточности.
Хрипы в легких как следствие застоя крови в малом круге кровообращения. Нарушение биоэнергетики Патогенез любой формы сердечной недостаточности связан с нарушением биоэнергетики. Нарушение биоэнергетики в конечном счете лежат в основе нарушения таких процессов, как сокращение, так и расслабление кардиомиоцитов. Энергетический обмен складывается из синтеза (ресинтеза), транспорта его энергии к эффекторным структурам кардиомиоцитов и утилизации ими энергии макроэргических фосфатов. Нарушение биоэнергетики может происходить на любом из этапов. I этап – образование энергии при окислении субстратов, причем 95% за счет аэробного окисления (эта энергия обеспечивает сократимость миокарда) и 5% - за счет гликолиза (обеспечение энергией Са-насоса СПР и пластических процессов). Субстратами окисления на 80% являются жирные кислоты, на 15-17% глюкоза и 3% - молочная кислота. При этом необходим О2 и нормальная структура и функция митохондрий. Нарушение биоэнергетики на I этапе может быть обусловлено нарушением доставки О2 и субстратов при недостаточности коронарного кровообращения, анемии, нарушении оксигенации гемоглобина в легких, гипогликемии, а также повреждение митохондрий (например, при гипоксии и ишемии митохондрии набухают и разрушаются). Компенсаторно усиливается анаэробный гликолиз (в 18 раз менее эффективен, чем окисление, сопряженное с фосфорилированием), что свидетельствует о снижении эффективности обмена (↓ƞ Е). II этап – фосфорилирование (кумулирование образовавшейся химической энергии в фосфатных связях) и транспорт к местам утилизации энергии (миофибриллам, транспортным АТФазам и т.д.). Возможные нарушения энергетического обмена на II этапе: 1. Процесс кумуляции энергии страдает из-за разобщения окисления и фосфорилирования. Мощными разобщителями окислительного фосфорилирования являются избыток Са2+, Н+, неэстерифицированные жирные кислоты, производные фенола, некоторые лекарственные препараты (антикоагулянты, грамицидин). При разобщении окислительного фосфорилирования больший, чем в норме, процент энергии рассеивается в виде тепла. 2. Нарушение транспорта энергии. Транспорт ЕАТФ (энергии концевых фосфатных связей) к местам утилизации осуществляется благодаря работе «креатинкиназного челночного механизма», открытого в 1977 г. Розенштраухом, Саксом и Чазовым. Челночный креатинкиназный механизм включает: - АТФ/АДФ-транслоказу, локализующуюся на внутренней поверхности внутренней мембраны митохондрий и осуществляющую перенос АТФ из внутреннего пространства митохондрий в межмембранное, а АДФ - из межмембранного пространства в цитоплазму митохондрий. - кратинфосфокиназу (КФК, митохондриальная фракция), локализующуюся на наружной поверхности внутренней мембраны митохондрий и контролирующую реакцию «АТФ + К ↔ КФ +АДФ», после чего с помощью АТФ/АДФ-транслоказы АДФ из межмембранного пространства переносится в цитоплазму митохондрий для рефосфорилирования, а креатинфосфат (КФ) через внешнюю мембрану митохондрий направляется к местам утилизации энергии: миофибриллам, транспортным АТФазам. В саркоплазме кардиомиоцита имеется своя КФК, которая осуществляет фосфорилирование цитоплазматической АДФ → «АДФ+КФ ↔ АТФ+К», после чего креатин возвращается в митохондрии за новой порцией энергии (отсюда «челнок»). Нарушение в работе креатикиназного челночного механизма могут возникать при количественных или качественных изменениях АТФ/АДФ-транслоказы и КФК и дефиците креатина. В любом случае большая часть энергии рассеивается в виде тепла, а меньшая кумулируется в АТФ и транспортируется к потребителям.
Показатель, характеризующий эффективность энергетического обмена на II этапе, называется эффективностью фосфорилирования и показывает, какая часть Ехим превращается в ЕАТФ ƞф = ЕАТФ/Ехим·100%. В патологии этот показатель уменьшается. III этап – утилизация энергии, которая обеспечивает сокращение миофибрилл, а частично (около 6%) энергия рассеивается в виде тепла. Сердечная мышца развивает напряжение, повышая внутрижелудочковое давление, что необходимо для раскрытия митрального и трикуспидального клапана и изгнания крови из желудочков. Этот этап биоэнергетики может нарушаться при пластической недостаточности миокарда (уменьшении содержания актина и миозина) и снижении АТФ-азной активности миозина. В любом случае уменьшается использование энергии на развитие мышечного напряжения, а расход тепла, наоборот, возрастает. Показатель, характеризующий эффективность III этапа энергетического обмена, называется эффективностью использования АТФ ƞАТФ = Wнапр./ЕАТФ·100% На IV этапе происходит трансформация энергии напряжения в общую работу сердца, однако часть этой энергии тратится на преодоление трения между актином и миозином и между мышечными волокнами. Особенно велики эти потери при кардиосклерозе, и чтобы учесть их потери вводится еще один показатель – эффективность напряжения Эффективность напряжения показывает, какая часть энергии напряжения (Wнапр .) трансформируется в общую работу (Wобщ.) сердца. ƞнапр. = Wобщ./Wнапр. ·100% На V этапе осуществляется трансформация общей работы в полезную (или внешнюю) работу, направленную на перемещение крови из желудочков в магистральные сосуды (аорту и легочную артерию). При этом часть энергии тратится на открывание клапанов, преодоление сил трения между кровью и эндокардом, между кровью и стенкой аорты и др. Эффективность этого этапа биоэнергетики сердца уменьшается при клапанных пороках (недостаточность аортального клапана, гипертоническая болезнь и др.). Чтобы учесть эти потери и оценить эффективность этого этапа обмена энергии водится еще один показатель – механическая эффективность сердца, показывающая, какая часть общей работы превращается во внешнюю:
ƞмех. = Wвнеш./Wобщ. ·100% Суммарный показатель эффективности работы сердца показывает, какая часть химической энергии окисляемых субстратов превращается во внешнюю работу сердца ƞ сердца = Wвнеш./Е ·100% В патологии этот показатель существенно снижается.
|
||||||||
Последнее изменение этой страницы: 2016-08-16; просмотров: 441; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.85.123 (0.01 с.) |