RC-автогенератор с мостом Вина 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

RC-автогенератор с мостом Вина



Рисунок 13.6 – Структурная схема RC -автогенератора с мостом Вина.

Низкочастотный усилитель имеет постоянный коэффициент усиления и постоянный фазовый сдвиг 3600 между входным и выходным напряжениями в пределах полосы пропускания. ФЧХ цепи ПОС такова, что для одной частоты создаются преимущественные условия (нулевой фазовый сдвиг между входным и выходным напряжениями). Т.к. коэффициент передачи двухкаскадного усилителя существенно больше отношения , то выходное напряжение достигнет значения раньше амплитудного значения, что приведет к значительным искажениям формы колебаний.

Рисунок 13.7 – Искажения формы колебаний.

Линейная отрицательная обратная связь (ООС) приводит к уменьшению коэффициента усиления, а следовательно к уменьшению искажений формы колебаний. Для поддержания и минимальных искажений формы используют автоматическое регулирование коэффициента усиления в зависимости от амплитуды генерируемых колебаний. Для этого используется цепь нелинейной ООС, когда одним из ее элементов является нелинейное сопротивление. Изменение его сопротивления приводит к изменению глубины ООС, а следовательно коэффициента усиления усилителя.

Мост Вина представляет собой четырехплечный мост переменного тока, два плеча которого состоят из частотно зависимых элементов, а два других – чисто активные.

Рисунок 13.8 – Мост Вина:

R1,R2,C1,C2 – частотозависимая ветвь моста (ветвь ПОС);

R3,R4 – активная ветвь моста (ветвь ООС).

Существует единственная частота

,

на которой фазовый сдвиг между подводимым напряжением и напряжением на выходе равен нулю.

Коэффициенты передачи ветви ПОС моста Вина на этой частоте равен . Следовательно, минимальный коэффициент усиления для обеспечения выполнения БА . Реальный двухкаскадный усилитель позволяет получить усиление по напряжению намного превышающий , поэтому такой усилитель охватывается глубокой ООС.

Рисунок 13.9 – RC -генератор с мостом Вина:

VT1, VT2 – усилительные элементы двухкаскадного усилителя;

R1, R2, R3, R4, C2, C2 – частотнозависимая ветвь моста (ветвь ПОС);

R3, R4, R5 – элементы, обеспечивающие режим по постоянному току каскада на VT1;

R6 – нагрузка коллекторной цепи VT1;

R7, R8 – активная ветвь моста (ветвь ООС);

C3, C4 – разделительные конденсаторы, т.е. не пропускают постоянный ток на вход второго каскада и в нагрузку соответственно;

R9,R10 – элементы, обеспечивающие режим по постоянному току каскада на VT2;

R11 – нагрузка коллекторной цепи VT2;

R12 – температурная стабилизация рабочей точки. На R12 образуется сигнал ООС, которым дополнительно охватывается каскад на VT2;

R13 – нагрузка генератора.

БФ выполняется за счет того, что двухкаскадный усилитель на транзисторах, включенных по схеме с ОЭ, имеет полный фазовый сдвиг между сигналами и 3600. Мост Вина по частоте генерации не вносит фазового сдвига.

БА выполняется следующим образом. Двухкаскадный усилитель, имеющий коэффициент усиления , охватывают обратной отрицательной связью (в цепях эмиттеров транзисторов отсутствуют конденсаторы и введена активная ветвь моста Вина), которая снижает коэффициент усиления.

При подключении к источнику питания уменьшается потенциал коллектора транзисторов. По частотозависимой ветви моста на вход усилителя (базу VT1) поступает это уменьшение (сигнал ПОС), уменьшая потенциал базы и увеличивая потенциал коллектора. Теперь рост потенциала коллектора поступает по цепи ПОС на вход усилителя и приводит к уменьшению потенциала коллектора и т.д. Таким образом, на выходе будут наблюдаться колебания электрической энергии.

RC-генераторы применяют при радиотехнических измерениях в диапазоне звуковых, низких и очень низких частот.

 

ФОРМИРОВАНИЕ ДВУХПОЛОСНЫХ АМ СИГНАЛОВ

Общие сведения

Для формирования АМ сигнала необходимо сумму напряжений несущего колебания и модулирующего сигнала подать на вход нелинейной цепи, содержащей полупроводниковый диод или транзистор. Спектр тока в такой цепи содержит составляющие, которых нет в воздействующем на нее напряжении. Остается выделить с помощью электрического фильтра составляющие, образующие АМ сигнал.

На ВАХ диода, транзистора или лампы можно выделить квадратичный и линейный участок. Использование первого участка определяет режим малого сигнала, при котором входное напряжение не должно заходить как в область отсечки, так и в область насыщения. Использование второго участка определяет режим сильного сигнала, при котором входное напряжение переводит транзистор в режим отсечки, а может переводить его и в режим, близкий к насыщению. ВАХ на первом участке аппроксимируют полиномом -ой степени, а на втором участке – ломаной прямой.

Амплитудные модуляторы классифицируют:

1. по схеме соединения НЭ - на однотактные (содержащие один НЭ), балансные (представляющие собой два однотактных), и кольцевые (представляющие собой два балансных);

2. по типу применяемых НЭ – на пассивные (на полупроводниковых диодах) и активные (на лампах, транзисторах).

Однотактные модуляторы

Рисунок 14.1 – Принципиальная схема диодного амплитудного модулятора.

Напряжение модулирующего сигнала перемещает рабочую точку по квадратичному участку ВАХ диода путем изменения напряжения смещения на аноде относительно катода. Зависимость тока через диод от времени имеет сложный характер. Приращения тока различны в положительный и отрицательный полупериоды как несущего, так и модулирующего колебаний. Ток первой гармоники оказывается промодулированным по амплитуде сигналом . Напряжение на выходе колебательного контура, настроенного на частоту несущей и имеющего полосу пропускания, равную ширине спектра АМ сигнала , пропорционально току этой гармоники. Остальные гармоники тока отфильтровываются, т.к. сопротивление контура на их частотах практически равно нулю.

Рисунок 14.2 – Временные диаграммы работы диодного амплитудного

модулятора.

Такой же вывод можно получить, воспользовавшись спектральным методом анализа нелинейной цепи. Пусть ВАХ диода представлена полиномом второй степени:

,

где - коэффициенты аппроксимации;

- бигармоническое воздействие;

- напряжение несущего колебания;

- напряжение модулирующего сигнала.

Вид полинома после подстановки:

.

Подчеркнуты составляющие тока с частотами, сосредоточенными вблизи частоты несущей . В сумме они образуют ток первой гармоники , промодулированный по амплитуде модулирующим сигналом:

Напряжение на контуре:

,

где - входное резонансное сопротивление контура;

- амплитуда напряжения на контуре при отсутствии модуляции;

- коэффициент амплитудной модуляции.

Рисунок 14.3 – Спектр тока через диод.

Т.к. диоды имеют незначительный участок с квадратичной характеристикой, то уровень АМ сигнала на выходе такого модулятора мал.

Для повышения напряжения выходного АМ сигнала диодный модулятор используют в режиме больших значений модулирующего и несущего колебаний. Еще больший его уровень будет, если модулятор выполнить на активном НЭ.

Рисунок 14.4 – Принципиальная схема амплитудного модулятора на

транзисторе.

Напряжение смещения обеспечивает режим работы транзистора с отсечкой. За счет того, что рабочая точка перемещается модулирующим сигналом , происходит непрерывное изменение амплитуды и угла отсечки коллекторного тока . Вследствие этого амплитуда первой гармоники коллекторного тока меняется во времени пропорционально модулирующему сигналу . Напряжение на колебательном контуре будет представлять собой АМ сигнал.

Такой же вывод можно получить, воспользовавшись графическим методом анализа нелинейной цепи. Соответствующие построения приведены на рисунке 14.5.

Рисунок 14.5 – Временные диаграммы работы амплитудного модулятора

на транзисторе.

Амплитуда импульсов коллекторного тока:

,

где - значение амплитуды импульсов тока при отсутствии модулирующего сигнала;

- размерный коэффициент пропорциональности.

Амплитуда первой гармоники коллекторного тока:

.

Амплитуда напряжения на контуре:

,

где - амплитуда напряжения, обусловленного первой гармоникой коллекторного тока, при отсутствии модуляции;

- коэффициент амплитудной модуляции.

Напряжение на выходе модулятора:

.

При такой модуляции неизбежны искажения: форма огибающей АМ сигнала отличается от формы модулирующего сигнала, т.к. с изменением последнего происходит изменение угла отсечки и соответственно коэффициента Берга .



Поделиться:


Последнее изменение этой страницы: 2016-08-16; просмотров: 1283; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.19.31.73 (0.017 с.)