Устойчивость откосов и склонов, давление грунта на подпорные стены 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Устойчивость откосов и склонов, давление грунта на подпорные стены



6.1. Общие положения

 

Откосом называется искусственно созданная поверхность, ограничивающая природный грунтовый массив, выемку или насыпь. Откосы образуются при возведении различного рода насыпей (дорожное полотно, дамбы, земляные плотины и т. д.), выемок (котлованы, траншеи, каналы, карьеры и т. п.) или при перепрофилировании территорий.

Склоном называется откос, образованный природным путем и ограничивающий массив грунта естественного сложения.

Откос отличают от склона большим углом наклона свободной поверхности к горизонтали. По различным литературным источникам откосом называют склон с углом наклона свободной поверхности к горизонтали более 30°. Нормативная классификация грунтовых массивов, подразделяющая их на склоны и откосы, отсутствует. В связи с эти приведенные выше определения откоса являются условными.

Массив грунта при определенных условиях может потерять устойчивость и в результате этого перейти из состояния статического равновесия в состояние движения. Такое состояние грунтового массива называется оползнем. Принятая классификация оползней основана на схемах потери устойчивости грунтового массива. Различают следующие виды оползней: оползни вращения; оползни скольжения; оползни разжижения (рис. 6.1).

 

 

 

Рис. 6.1. Виды оползней:

а – оползень вращения, б – оползень скольжения (пристенный оползень); 1 – поверхности скольжения в теле оползня, 2 – стационарная плоскость скольжения на границе оползня
с подстилающим устойчивым массивом

Для оползней вращения характерна форма потери устойчивости грунтового массива в виде движения по криволинейной поверхности с вращением. Оползни скольжения называют также пристенными оползнями, так как их движение при нарушении равновесия происходит по заранее известным плоскостям, являющимся плоскостями контакта грунтового массива с устойчивыми горными породами. Оползнями разжижения называют грязевые потоки разжиженного водой грунта по выработанным руслам рек и тельвегам, например, селевые потоки. Механика грунтов изучает первые два типа оползней. Нарушение равновесия массива грунта может происходить внезапно со сползанием значительных масс грунта.

Основными причинами потери устойчивости откосов и склонов являются:

· устройство недопустимо крутого откоса или подрезка склона, находящегося в состоянии, близком к предельному;

· увеличение внешней нагрузки (возведение сооружений, складирование материалов на откосе или вблизи его бровки);

· изменение внутренних сил (увеличение удельного веса грунта при возрастании его влажности или, напротив, влияние взвешивающего давления воды на грунты);

· неправильное назначение расчетных характеристик прочности грунта или снижение его сопротивления сдвигу за счет, например, повышения влажности;

· проявление гидродинамического давления, сейсмических сил, различного рода динамических воздействий (движение транспорта, забивка свай и. т. п.).

Устойчивость откоса из идеально сыпучего грунта. Откос из идеально сыпучего грунта имеет свободную поверхность, наклоненную к горизонтальной плоскости под углом α (рис. 6.2).

Элементарная частица грунта на свободной поверхности испытывает силу тяжести G, которую можно разложить на нормальную N и касательную T к наклонной поверхности компоненты:

 

. (6.1)

 

Элементарная частица грунта удерживается на наклонной поверхности силой трения, равной произведению нормальной компоненты силы тяжести на коэффициент трения. Обозначим коэффициент трения как тангенс угла внутреннего трения φ. Тогда из уравнения равновесия проекций всех сил на наклонную плоскость получим:

 

(6.2)

 

(6.3)

 

Полученный результат можно обобщить в виде следующего определения: угол наклона к горизонтальной плоскости свободной поверхности откоса, сложенного идеально сыпучим грунтом, равен углу внутреннего трения этого грунта. Этот результат можно использовать в качестве теоретической основы экспериментального метода по определению угла внутреннего трения сыпучего грунта.

 

 


6.2. Инженерные методы расчета устойчивости откосов и склонов

 

В проектной практике применяются инженерные методы расчета устойчивости, содержащие различного рода упрощающие предположения. Наиболее распространенный из них – метод круглоцилиндрических поверхностей скольжения, относящий к схеме плоской задачи.

Этот метод был впервые применен К. Петерсоном в 1916 г. для расчета устойчивости откосов и долгое время назывался методом шведского геотехнического общества.

Рассмотрим широко используемую модификацию этого метода. Предположим, что потеря устойчивости откоса или склона, представленного на рис. 6.3, а, может произойти в результате вращения отсека грунтового массива относительно некоторого центра .

Поверхность скольжения в этом случае будет представлена дугой окружности с радиусом r и центром в точке . Смещающийся массив рассматривается как недеформируемый отсек, все точки которого участвуют в общем движении. Коэффициент устойчивости принимается в виде

, (6.3)

 

где и – моменты относительно центра вращения всех сил, соответственно удерживающих и смещающих отсек.

 

 

Рис. 6.3. Схема к расчету устойчивости откосов методом круглоцилиндрических поверхностей скольжения: а – расчетная схема; б – определение положения наиболее опасной поверхности скольжения; 1, 2, … – номера элементов

 

Для определения входящих в формулу (6.4) моментов отсек грунтового массива разбивается вертикальными линиями на отдельные элементы. Характер разбивки назначается с учетом неоднородности грунта отсека и профиля склона так, чтобы в пределах отрезка дуги скольжения основания каждого i -го элемента прочностные характеристики грунта j и с были постоянными. Вычисляются силы, действующие на каждый элемент: вес грунта в объеме элемента и равнодействующая нагрузки на его поверхность . При необходимости могут быть также учтены и другие воздействия (фильтрационные, сейсмические силы и т. д.). Равнодействующие сил считаются приложенными к основанию элемента и раскладываются на нормальную и касательную составляющие к дуге скольжения в точке их приложения. Тогда

 

; . (6.5)

 

Соответственно момент сил, вращающих отсек вокруг 0, определился как

 

, (6.6)

 

где п – число элементов в отсеке.

Принимается, что удерживающие силы в пределах основания каждого элемента обусловливаются сопротивлением сдвигу за счет внутреннего трения и сцепления грунта. Тогда с учетом выражения для закона кулона можно записать

 

, (6.7)

 

где – длина дуги основания i -го элемента, определяемая как . Здесь – ширина элемента).

Отсюда момент сил, удерживающих отсек, будет иметь вид

 

. (6.8)

 

Учитывая формулу (6.4), окончательно получим

 

. (6.9)

 

При устойчивость отсека массива грунта относительно выбранного центра вращения 0 считается обеспеченной. Основная сложность при практических расчетах заключается в том, что положение центра вращения 0 и выбор радиуса r, соответствующие наиболее опасному случаю, неизвестны. Поэтому обычно проводится серия таких расчетов при различных положениях центров вращения и значениях r. Чаще всего наиболее опасная поверхность скольжения проходит через нижнюю точку откоса или склона. Однако если в основании залегают слабые грунты с относительно низкими значениями прочностных характеристик j и с, то это условие может не выполняться.

Один из приемов нахождения наиболее опасного положения поверхности скольжения заключается в следующем. Задаваясь координатами центров вращения 01, 02, …, 0n на некоторой прямой, определяют коэффициенты устойчивости для соответствующих поверхностей скольжения и строят эпюру значений этих коэффициентов (рис. 6.3, б). Через точку 0min, соответствующую минимальному коэффициенту устойчивости, проводят по нормали второй отрезок прямой и, располагая на нем новые центры вращения , , …, , вновь оценивают минимальное значение коэффициента устойчивости. Тогда и определит положение наиболее опасной поверхности скольжения. При устойчивость откоса или склона будет обеспечена.

 

 


6.3. Мероприятия по повышению устойчивости сооружений,
откосов и склонов

Первое основное направление – это уменьшение суммарных активных воздействий на сооружение, способных вызвать нарушение их устойчивости.

Примерами таких мероприятий в рассмотренных на рис. 6.4 вариантах повышения устойчивости подпорной стенки являются: устройство разгрузочных плит (рис. 6.4, д) и засыпка за стенкой крупнозернистого материала (с большим φ) (рис. 6.4, б), существенно уменьшающих активное давление грунта на стенку. В случае откосов (рис. 6.5, а) к этому разряду мероприятий относятся уположение откосов, снижение кривой депрессии и ее заглубление в тело откоса путем устройства дренажей (рис. 6.5, б), всякого рода пригрузки низовой части откоса (рис. 6.5, в), создающие обратный момент активных сил.

 

Рис. 6.4. Основные схемы повышения устойчивости подпорной стенки: а – типовая конструкция подпорной стены; б – засыпка крупнозернистым материалом; в – применение свайных конструкций; г – устройство упоров; д – устройство разгрузочных плит; е – устройство анкерных плит; ж – применение армированного грунта

 

Второй, не менее эффективный, очень многообразный путь повышения устойчивости – это увеличение реактивных сил сопротивления сдвигу.

Очевидный путь повышения устойчивости – увеличение прочности грунтов, т. е. их прочностных характеристик (φ и с) путем их уплотнения или закрепления, а в некоторых случаях даже путем замены слабых грунтов на более прочные. К этому же разряду мероприятий можно отнести заглубление сооружений и перенос возможной поверхности скольжения в более глубокие и обычно более прочные слои грунта, например, применением фундаментов свайной конструкции (рис. 6.4, в) или устройством зубьев (рис. 6.5, д). Применение зубьев позволяет перенести поверхность скольжения из контактной, как правило, нарушенной производством работ зоны грунта в область уверенно ненарушенной структуры (рис. 6.5, д).

Безусловно, увеличивают устойчивость сооружений на сдвиг всякого рода анкеры, например, анкерные плиты (рис. 6.4, е), которые должны размещаться за пределами призмы активного давления грунта на сооружение. Одной из разновидностей анкеровки является применение армированного грунта (рис. 6.4, ж) с использованием трения часто поставленных анкерных тяг в массиве грунта засыпки. Некоторое увеличение устойчивости обеспечивает устройство упоров (рис. 6.4, г) путем использования сил сопротивления сдвигу по их подошве.

 

Рис. 6.5. Повышение устойчивости напорных сооружений:

а – уположение откосов; б – устройство дренажей; в – пригрузка низовой части откоса;
г – увеличение веса сооружения; д – устройство зубьев; е – устройство противофильтрационных завес; ж – устройство дренажа и противофильтрационных завес; з – устройство противофильтрационных понуров; и – увеличение веса сооружения пригрузкой водой

 

При необходимости увеличения устойчивости сооружения в плоскости подошвы фундамента одним из основных мероприятий является увеличение нормальных контактных напряжений с, а в случае связных грунтов – развитие площади подошвы фундамента F. Увеличение нормальных напряжений и, как следствие, сил трения по подошве сооружения можно обеспечить, увеличивая вес сооружения Q или уменьшая противодавление воды Pw (рис. 6.5, г). Увеличение веса сооружения Q наиболее экономично может производиться путем использования пригрузки его грунтом (рис. 6.4, б) или водой (рис. 6.5, и). Уменьшение противодавления по подошве напорных гидротехнических сооружений можно обеспечить либо увеличивая путь фильтрации устройством вертикальных противофильтрационных завес (рис. 6.5, е),в частности, забивая шпунты, или противофильтрационных понуров (рис. 6.5, з), либо устройством по подошве сооружения дренажа, связанного с нижним бьефом и обычно в комбинации с вертикальными или горизонтальными противофильтрационными элементами (рис. 6.5, ж).

Примером эффективного использования пригрузки сооружения водой и комбинации дренажей с противофильтрационными элементами является анкерный понур (рис. 6.5, и), конструкция которого впервые была применена на плотине и здании станции Свирской ГЭС (1936), а затем на ряде Волжских ГЭС. При этом, в отличие от обычного, только противофильтрационного понура (рис. 6.5, з), анкерный понур, представляющий собой сравнительно тонкую железобетонную плиту, воспринимает часть сдвигающей нагрузки, действующей на сооружение, и работает в основном на растяжение. При этом водонепроницаемая гидроизолированная плита анкерного понура прижимается к грунту разностью давлений сверху воды (Δ Q) и грунта (Δ Q') верхнего бьефа и снизу – противодавления. В результате в случае предельного состояния по подошве понура могут развиваться силы трения и сцепления, обеспечивающие существенное увеличение общего коэффициента устойчивости сооружения на сдвиг по подошве понура и основного массива сооружения.

Однако увеличение собственного веса сооружения, повышая его устойчивость по подошве сооружения, может несколько понижать коэффициент устойчивости. Поэтому эффективность такого рода мероприятий в каждом случае должна определяться проверочными расчетами.



Поделиться:


Последнее изменение этой страницы: 2016-08-16; просмотров: 4071; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.217.144.32 (0.039 с.)