Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Структурная схема эвм. Функции отдельных блоков.↑ Стр 1 из 6Следующая ⇒ Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Структурная схема ЭВМ. Функции отдельных блоков. ЭВМ или просто ВМ - это совокупность аппаратных и программных средств, предназначенных для обработки информации. Архитектура Фон-Неймана - классическая архитектура ЭВМ: На данной схеме присутствуют: • АЛУ (арифметико-логическое устройство) – выполняет арифметические и логические операции над информацией, представленной в двоичном коде, т. е. обеспечивает выполнение процедур по обработке данных; • УУ (устройство управления) – организует процесс выполнения программ; • ЗУ (запоминающее устройство) – предназначено для размещения и хранения последовательности команд (программ) и данных; ОЗУ - энергозависимое оперативное запоминающее устройство. ПЗУ - постоянное запоминающее устройство. • УВВ (устройства ввода-вывода) – обеспечивают ввод и вывод данных из компьютера для установления прямой и обратной связи между пользователем и компьютером; • внутренние связи предназначены для обмена информацией между устройствами компьютера, они реализуются с помощью линий связей (электрических проводников), тонкими стрелками показаны линии, по которым передаются команды, а толстыми – данные. Структуры ВМ. Существует два способа построения вычислительных машин: с непосредственными связями и на основе шины. Типичным представителем первого способа может служить классическая фон-неймановская ВМ. В ней между взаимодействующими устройствами имеются непосредственные связи. Особенности связей (число линий в шинах, пропускная способность и т. п.) определяются видом информации, характером и интенсивностью обмена Достоинством архитектуры с непосредственными связями можно считать возможность развязки «узких мест» путем улучшения структуры и характеристик только определенных связей. У фон-неймановских ВМ таким «узким местом» является канал пересылки данных между ЦП и памятью. Кроме того, ВМ с непосредственными связями плохо поддаются реконфигурации.
Структура современных персональных компьютеров отличается от классической структуры компьютера. Перечислим ниже основные отличия (особенности): • АЛУ и УУ объединены в единое устройство, называемое микропроцессором (МП, центральный процессор, реализованный на СБИС), кроме того, в состав МП входит ряд других устройств, предназначенных для хранения, записи, считывания и обмена информацией; • применение специализированных устройств – контроллеров, которым передается часть функций МП, связанная с обменом информации и управлением работой устройств для ввода и вывода (внешних устройств) информации, такая децентрализация позволяет повысить эффективность работы компьютера в целом за счет сокращения времени простоя МП; • вместо отдельных линий связи между устройствами используется системная магистраль с соответствующими устройствами сопряжения. Наличие системной магистрали в персональном компьютере позволяет осуществить обмен информацией между устройствами компьютера, уменьшить число линий связи, подключить различные дополнительные устройства через соответствующие разъемные соединения и т. д. В варианте с общей шиной все устройства вычислительной машины подключены к магистральной шине, служащей единственным трактом для потоков команд, данных и управления. Наличие общей шины существенно упрощает реализацию ВМ, позволяет легко менять состав и конфигурацию машины. Вместе с тем, именно с шиной связан и основной недостаток архитектуры: в каждый момент передавать информацию по шине может только одно устройство. Основную нагрузку на шину создают обмены между процессором и памятью, связанные с извлечением из памяти команд и данных и записью в память результатов вычислений. На операции ввода/вывода остается лишь часть пропускной способности шины. Магистраль – устройство, которое осуществляет взаимосвязь и обмен информацией между всеми устройствами компьютера. Магистраль включает в себя три многоразрядные шины, представляющие собой многопроводные линии: шину данных, шину адреса, шину управления. МП – микропроцессор; ПП – постоянная память; ОП – оперативная память: ВК – видеоконтроллер; ПИ – последовательный интерфейс; И – интерфейсы других внешних устройств; К – контроллер; ЗК – звуковой контроллер: ИП – параллельный интерфейс; СА – сетевой адаптер; НГМД – накопитель на гибких магнитных дисках; НЖМД – накопитель на жестких магнитных дисках; НОД – накопитель на оптических дисках; НМЛ – накопитель на магнитной ленте; ПУ – печатающее устройство; БП – блок питания и УО – устройства охлаждения. http://www.radioland.net.ua/contentid-288-page1.html (Внутри системного блока на материнской плате компьютера имеется микросхема под названием BIOS, питание на которую подается от батарейки установленной там же. Эта микросхема «помнит» текущую дату, время и многие настройки компьютера. После включения компьютера стартует программа-тест POST (Power On Self Test), зашитая в микросхеме BIOS. Процедура самотестирования POST проверяет конфигурацию технических средств (процессор, память, ресурсы ввода/вывода,...), их готовность. После успешного завершения процедуры POST, компьютер переходит к процессу загрузки операционной системы в оперативную память. В итоге на экране появляется рабочий стол, а мы говорим - компьютер загрузился. http://www.informatika.edusite.ru/lezione8_14.htm)
Стандартный цикл работы ЦП. С лекции:
Где-то я видел больше инфы. Найду - скину Способы обмена информацией. Основной функцией модулей ввода/вывода является обеспечение обмена информацией В ВМ находят применение три способа организации ввода/вывода (В/ВЫВ):
При программно управляемом вводе/выводе все связанные с этим действия происходят по инициативе центрального процессора и под его полным контролем. ЦП выполняет программу, которая обеспечивает прямое управление процессом ввода/вывода, включая проверку состояния устройства, выдачу команд ввода или вывода. Выдав в МВВ команду, центральный процессор должен ожидать завершения ее выполнения, и, поскольку ЦП работает быстрее, чем МВВ, это приводит к потере времени. Ввод/вывод по прерываниям во многом совпадает с программно управляемым методом. Отличие состоит в том, что после выдачи команды ввода/вывода ЦП не должен циклически опрашивать МВВ для выяснения состояния устройства. Вместо этого процессор может продолжать выполнение других команд до тех пор, пока не получит запрос прерывания от МВВ, извещающий о завершении выполнения ранее выданной команды В/ВЫВ. Как и при программно управляемом В/ВЫВ, ЦП отвечает за извлечение данных из памяти (при выводе) и запись данных в память (при вводе). Повышение как скорости В/ВЫВ, так и эффективности использования ЦП обеспечивает третий способ В/ВЫВ - прямой доступ к памяти (ПДП). В этом режиме основная память и модуль ввода/вывода обмениваются информацией напрямую, минуя процессор.
5. (!)Программный обмен. Ввод информации. Аппаратное и программное обеспечение. 6. (!)Программный обмен. Вывод информации. Аппаратное и программное обеспечение Программный ввод-вывод – это наиболее простой способ обмена данными между процессором и внешним устройством, часто называемый также вводом/выводом с опросом. Ввод/вывод происходит под полным контролем центрального процессора и реализуется специальной процедурой ввода/вывода. В этой процедуре ЦП с помощью команды ввода/вывода сообщает модулю ввода/вывода, а через него и внешнему устройству о предстоящей операции. Адрес модуля и ВУ, к которому производится обращение, указывается в адресной части команды ввода или вывода. Модуль исполняет затребованное действие, после чего устанавливает в единицу соответствующий бит в своем регистре состояния. Ничего другого, чтобы уведомить ЦП, модуль не предпринимает. Следовательно, для определения момента завершения операции или пересылки очередного элемента блока данных процессор должен периодически опрашивать и анализировать содержимое регистра состояния МВВ. Иллюстрация процедуры программно управляемого ввода блока данных с устройства ввода приведена на рис. данные читаются пословно. Для каждого читаемого слова ЦП должен оставаться в цикле проверки, пока не определит, что слово находится в регистре данных МВВ, то есть доступно для считывания. Процедура начинается с выдачи процессором команды ввода, в которой указан адрес конкретного МВВ и конкретного ВУ. Существуют четыре типа команд В/ВЫВ, которые может получить МВВ: управление, проверка, чтение и запись. Команды управления используются для активизации ВУ и указания требуемой операции. Например, в устройство памяти на магнитной ленте может быть выдана команда перемотки или продвижения на одну запись. Для каждого типа ВУ характерны специфичные для него команды управления. Команда проверки применяется для проверки различных ситуаций- возникающих в МВВ и ВУ в процессе ввода/вывода. С помощью таких команд ЦП способен выяснить, включено ли ВУ, готово ли оно к работе, завершена ли последняя операция ввода/вывода и не возникли ли в ходе ее выполнения какие-либо ошибки. Действие команды сводится к установке или сбросу соответствующих разрядов регистра состояния МВВ. Команда чтения побуждает модуль получить элемент данных из ВУ и занести его в регистр данных (РД). ЦП может получить этот элемент данных, запросив МВВ поместить его на шину данных. Команда записи заставляет модуль принять элемент данных (байт или слово) с шины данных и переслать его в РД с последующей передачей в ВУ.
Если к МВВ подключено несколько ВУ, то в процедуре ввода/вывода нужно производить циклический опрос всех устройств, с которыми в данный момент прох изводятся операции В/ВЫВ. Из блок-схемы (см. рис. 8.6) явно виден основной недостаток программно управляемого В/ВЫВ - неэффективное использование процессора из-за ожидания готовности очередной порции информации, в течение которого никаких иных пох лезных действий ЦП не выполняет. Кроме того, пересылка даже одного слова трех бует выполнения нескольких команд. ЦП должен тратить время на анализ битов состояния МВВ, запись в МВВ битов управления, чтение или запись данных со скоростью, определяемой внешним устройством. Все это также отрицательно сках зывается на эффективности ввода/вывода. Главным аргументом в пользу программно управляемого ввода/вывода являх ется простота МВВ, поскольку основные функции по управлению В/ВЫВ берет на себя процессор. При одновременной работе с несколькими ВУ приоритет устройств легко изменить программными средствами (последовательностью опроса). Наконец, подключение к СВВ новых внешних устройств или
+ Известны два типа программно-управляемой передачи данных: синхронная, асинхронная. Синхронная передача данных характерна для периферийных устройств, для которых известны временные соотношения. При этом типе передачи устройство ввода-вывода должно быть готово к приему или передаче данных за время, равное времени выполнения определенной команды процессора. Синхронная передача реализуется при минимальных затратах технических и программных средств. Асинхронная передача данных, иногда называемая обменом посредством “рукопожатия”, широко используется в микроЭВМ. При такой передаче данных ЭВМ перед выполнением операции ввода-вывода проверяет состояние периферийного устройства. Блок-схема алгоритма асинхронного программного обмена (фрагмента некоторой программы) приведена на рис. 16. Обычно при обмене необходимо:
Асинхронная передача является идеальной в смысле согласования временных различий между периферийными устройствами и процессором. Недостаток ее в том, что процессор вынужден ожидать, пока периферийное устройство не будет готово к обмену. Это приводит не только к непроизводительным затратам времени МП (при наличии длительных задержек), но и во многих случаях является просто недопустимым. Например, в процессах управления в этом случае возникает необходимость сохранения уровня сигналов управления на время ожидания передачи. Методом, позволяющим устранить подобные трудности, является передача данных с прерыванием программы. Рис. 16. Блок-схема алгоритма асинхронного программного обмена Общий алгоритм ПДП. Для осуществления прямого доступа к памяти контроллер должен выполнить ряд последовательных операций:
Подробнее: После инициализации процесс пересылки информации может быть начат в любой момент. Инициаторами обмена вправе выступать как ЦП, так и ВУ.
12. (!)Клавиатура. Аппаратное и программное обеспечение. непонятная хрень с лекций ^ http://ofap.ulstu.ru/res/REFER_BOOK_MK48&MK51/keybrd.htm
Видеорежимы Интегральной характеристикой особенностей работы адаптера является совокупность поддерживаемых им режимов. Поведение адаптера в том или ином режиме является фактическим стандартом и полностью характеризует все особенности адаптера, доступные для программиста средства управления адаптером и т.п. Режимы принято нумеровать, начиная с нуля. Чем совершеннее видеоадаптер, тем больше режимов он поддерживает. Как правило, более совершенные адаптеры полностью совместимы со своими предшественниками и с точки зрения прикладной программы отображает информацию точно так же, как и его предшественник. Видеорежимы можно объединить в две группы: текстовые и графические. Видеорежимы Интегральной характеристикой особенностей работы адаптера является совокупность поддерживаемых им режимов. Поведение адаптера в том или ином режиме является фактическим стандартом и полностью характеризует все особенности адаптера, доступные для программиста средства управления адаптером и т.п. Режимы принято нумеровать, начиная с нуля. Чем совершеннее видеоадаптер, тем больше режимов он поддерживает. Как правило, более совершенные адаптеры полностью совместимы со своими предшественниками и с точки зрения прикладной программы отображает информацию точно так же, как и его предшественник. Видеорежимы можно объединить в две группы: текстовые и графические. Магнитооптические диски. Запись на магнитооптические диски (МО-диски) выполняется при взаимодействии лазера и магнитной головки. Луч лазера разогревает до точки Кюри (температуры потери материалом магнитных свойств) микроскопическую область записывающего слоя, которая при выходе из зоны действия лазера остывает, фиксируя магнитное поле, наведенное магнитной головкой. В результате данные, записанные на диск, не боятся сильных магнитных полей и колебаний температуры. Все функциональные свойства дисков сохраняются в диапазоне температур от -20 до +50 градусов Цельсия. МО-диски уступают обычным жестким магнитным дискам лишь по времени доступа к данным. Предельное достигнутое МО-дисками время доступа составляет 19 мс. Магнитооптический принцип записи требует предварительного стирания данных перед записью, и соответственно, дополнительного оборота МО-диска. Однако завершенные недавно исследования в SONY и IBM показали, что это ограничение можно устранить, а плотность записи на МО-дисках можно увеличить в несколько раз. Во всех других отношениях МО-диски превосходят жесткие магнитные диски. В магнитооптическом дисководе используются сменные диски, что обеспечивает практически неограниченную емкость. Стоимость хранения единицы данных на МО-дисках в несколько раз меньше стоимости хранения того же объема данных на жестких магнитных дисках. Сегодня на рынке МО-дисков предлагается более 150 моделей различных фирм. Одно из лидирующих положений на этом рынке занимает компания Pinnacle Micro Inc. Для примера, ее дисковод Sierra 1.3 Гбайт обеспечивает среднее время доступа 19 мс и среднее время наработки на отказ 80000 часов. Для серверов локальных сетей и рабочих станций компания Pinnacle Micro предлагает целый спектр многодисковых систем емкостью 20, 40, 120, 186 Гбайт и даже 4 Тбайт. Для систем высокой готовности Pinnacle Micro выпускает дисковый массив Array Optical Disk System, который обеспечивает эффективное время доступа к данным не более 11 мс при скорости передачи данных до 10 Мбайт/с. Магнитооптические накопители информации (МО) относятся к внешним ЗУ и предназначены для долговременного хранения относительно больших объемов информации (до нескольких гигабайт). МО относятся к ЗУ с прямым (произвольным) доступом к данным, хранящимся на магнитооптическом диске. Магнитооптические накопители информации подразделяются на внутренние, устанавливаемые в системный блок компьютера, и внешние (переносные) по отношению к системному блоку. Преимущество внешних накопителей состоит в том, что нагревание дисковода накопителя во время работы не повышает температуру внутри корпуса системного блока компьютера. Подключаются накопители информации на магнитооптических дисках к системной шине компьютера через соответствующий интерфейс. Конструктивно МО состоит из дисковода и магнитооптического носителя информации (магнитооптического диска). Поверхность магнитооптического диска покрыта пленкой специального магнитного материала (магнитооптический слой создается на основе порошка из сплава кобальта, железа и тербия и обладает ярко выраженными ферромагнитными свойствами). Данный материал не может изменить ориентацию намагниченности при обычной температуре приложенным к нему переменным магнитным полем. В магнитооптическом диске при записи и считывании информации этот магнитный слой реагирует как на магнитное, так и на температурное воздействие. В дисководах МО при записи и считывании информации используется магнитооптический способ, который предполагает использование в дисководе накопителя оптического генератора (лазера) и магнитных головок. При записи лазерный луч нагревает часть поверхности пленки вращающегося диска, куда должна производиться двоичная запись, до определенной температуры, которая в физике называется «точкой Кюри» (Curipoint). В этой температурной точке (у большинства применяемых материалов она составляет около 200 °C) резко падает магнитная проницаемость материала, и изменение магнитного состояния его частиц может быть произведено относительно небольшим по мощности магнитным полем. В качестве носителей информации в МО используются магнитооптические диски. Магнитооптический диск состоит из нескольких слоев различных материалов. Основными из них являются магнитооптический слой, состоящий из материала с вышеописанными свойствами, и отражающий слой, который повышает отражательную способность диска. На рис. приведено сечение одностороннего магнитооптического диска. Структура магнитооптического диска является многослойной. Слои размещаются на основании (подложке). В качестве материала подложки используется прозрачный поликарбонат. Подложка является основой диска и сверху покрывается прозрачным защитным слоем, оберегающим диск от механических повреждений. Толщина подложки составляет 1,2 мм. Магнитный слой создается на основе порошка из сплава кобальта, железа и тербия. С двух сторон он окружен диэлектрическими слоями, которые выполняются из прозрачного полимера и защищают диск от перегрева, а также увеличивают эффект поляризации при считывании. Далее следуют отражающий слой (создается путем нанесения материала из алюминия или золота) и защитный слой.
Структурная схема ЭВМ. Функции отдельных блоков. ЭВМ или просто ВМ - это совокупность аппаратных и программных средств, предназначенных для обработки информации. Архитектура Фон-Неймана - классическая архитектура ЭВМ: На данной схеме присутствуют: • АЛУ (арифметико-логическое устройство) – выполняет арифметические и логические операции над информацией, представленной в двоичном коде, т. е. обеспечивает выполнение процедур по обработке данных; • УУ (устройство управления) – организует процесс выполнения программ; • ЗУ (запоминающее устройство) – предназначено для размещения и хранения последовательности команд (программ) и данных; ОЗУ - энергозависимое оперативное запоминающее устройство. ПЗУ - постоянное запоминающее устройство. • УВВ (устройства ввода-вывода) – обеспечивают ввод и вывод данных из компьютера для установления прямой и обратной связи между пользователем и компьютером; • внутренние связи предназначены для обмена информацией между устройствами компьютера, они реализуются с помощью линий связей (электрических проводников), тонкими стрелками показаны линии, по которым передаются команды, а толстыми – данные. Структуры ВМ. Существует два способа построения вычислительных машин: с непосредственными связями и на основе шины. Типичным представителем первого способа может служить классическая фон-неймановская ВМ. В ней между взаимодействующими устройствами имеются непосредственные связи. Особенности связей (число линий в шинах, пропускная способность и т. п.) определяются видом информации, характером и интенсивностью обмена Достоинством архитектуры с непосредственными связями можно считать возможность развязки «узких мест» путем улучшения структуры и характеристик только определенных связей. У фон-неймановских ВМ таким «узким местом» является канал пересылки данных между ЦП и памятью. Кроме того, ВМ с непосредственными связями плохо поддаются реконфигурации.
Структура современных персональных компьютеров отличается от классической структуры компьютера. Перечислим ниже основные отличия (особенности): • АЛУ и УУ объединены в единое устройство, называемое микропроцессором (МП, центральный процессор, реализованный на СБИС), кроме того, в состав МП входит ряд других устройств, предназначенных для хранения, записи, считывания и обмена информацией; • применение специализированных устройств – контроллеров, которым передается часть функций МП, связанная с обменом информации и управлением работой устройств для ввода и вывода (внешних устройств) информации, такая децентрализация позволяет повысить эффективность работы компьютера в целом за счет сокращения времени простоя МП; • вместо отдельных линий связи между устройствами используется системная магистраль с соответствующими устройствами сопряжения. Наличие системной магистрали в персональном компьютере позволяет осуществить обмен информацией между устройствами компьютера, уменьшить число линий связи, подключить различные дополнительные устройства через соответствующие разъемные соединения и т. д. В варианте с общей шиной все устройства вычислительной машины подключены к магистральной шине, служащей единственным трактом для потоков команд, данных и управления. Наличие общей шины существенно упрощает реализацию ВМ, позволяет легко менять состав и конфигурацию машины. Вместе с тем, именно с шиной связан и основной недостаток архитектуры: в каждый момент передавать информацию по шине может только одно устройство. Основную нагрузку на шину создают обмены между процессором и памятью, связанные с извлечением из памяти команд и данных и записью в память результатов вычислений. На операции ввода/вывода остается лишь часть пропускной способности шины. Магистраль – устройство, которое осуществляет взаимосвязь и обмен информацией между всеми устройствами компьютера. Магистраль включает в себя три многоразрядные шины, представляющие собой многопроводные линии: шину данных, шину адреса, шину управления. МП – микропроцессор; ПП – постоянная память; ОП – оперативная память: ВК – видеоконтроллер; ПИ – последовательный интерфейс; И – интерфейсы других внешних устройств; К – контроллер; ЗК – звуковой контроллер: ИП – параллельный интерфейс; СА – сетевой адаптер; НГМД – накопитель на гибких магнитных дисках; НЖМД – накопитель на жестких магнитных дисках; НОД – накопитель на оптических дисках; НМЛ – накопитель на магнитной ленте; ПУ – печатающее устройство; БП – блок питания и УО – устройства охлаждения. http://www.radioland.net.ua/contentid-288-page1.html (Внутри системного блока на материнской плате компьютера имеется микросхема под названием BIOS, питание на которую подается от батарейки установленной там же. Эта микросхема «помнит» текущую дату, время и многие настройки компьютера. После включения компьютера стартует программа-тест POST (Power On Self Test), зашитая в микросхеме BIOS. Процедура самотестирования POST проверяет конфигурацию технических средств (процессор, память, ресурсы ввода/вывода,...), их готовность. После успешного завершения процедуры POST, компьютер переходит к процессу загрузки операционной системы в оперативную память. В итоге на экране появляется рабочий стол, а мы говорим - компьютер загрузился. http://www.informatika.edusite.ru/lezione8_14.htm)
|
||||
Последнее изменение этой страницы: 2016-08-15; просмотров: 5588; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.218.44 (0.012 с.) |