Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Звезды: Красные гиганты, белые карлики, нейтронные звезды, черные дырыСодержание книги
Поиск на нашем сайте
Красные гиганты – относительно холодные звезды высокой светимости с протяженными оболочками. Красные гиганты имеют большие радиусы и огромные излучающие поверхности. Максимум излучения приходится на красную и инфракрасную области спектра электромагнитного излучения. Красные гиганты имеют гелиевое ядро, окруженное тонким слоевым источником энерговыделения, где горит водород, или углеродно-кислородное ядро, окруженное двумя слоями горения водородным и гелиевым. Плотность вещества в ядрах красных гигантов достигает 108-109 г/см3, температура 108-109 К. Белые карлики – компактные звезды с массой порядка массы Солнца и радиусами около 1% радиуса Солнца. Белые карлики существуют благодаря устойчивому равновесию между силами тяготения, которые стремятся сжать звезду и давлением вырожденного электронного газа препятствующего этому. Плотность вещества белого карлика 105-106 г/см3, температура поверхности около 104 К. Основной источник светимости белого карлика – энергия теплового движения ионов вещества звезды. Электроны имеют квантовомеханический импульс ~ , Давление электронного газа пропорционально концентрации частиц и энергии Ферми ~ , Для релятивисткого электронного газа , концентрация пропорциональна плотности ~ , Следовательно давление электронного газа ~ ~ . Eсли гравитационное давление ~ > больше давления электронного газа, то происходит гравитационный коллапс звезды. Зависимость давления от плотности вещества , где . Существует верхний предел массы холодного невращающегося белого карлика (предел Чандрасекара): Предельная масса белого карлика . где МО- масса Солнца, -молекулярная масса приходящаяся на один электрон. Если масса звезды М больше начинается процесс нейтронизации вещества звезды. Ядра начинают захватывать электроны в реакции обратного бета-распада , когда энергия Ферми электронов превышает порог нейтронизации. Ядра перегружаются нейтронами, и с некоторого момента начинают выбрасывать нейтроны, плотность звезды возрастает и приближается к ядерной. Размер звезду уменьшается. Белый карлик, пройдя предел Чандрасекара, превращается в нейтронную звезду. Нейтронные звезды – сверхплотные звезды, состоящие из нейтронов с малой примесью электронов, сверхтяжелых атомных ядер и протонов. Нейтронные звезды были предсказаны в 30 гг. 20 века и открыты в виде пульсаров в 1967 г.. Пульсары испускают периодическое радиоизлучение с периодом 0,01-1 сек, которое вызвано быстрым вращением нейтронной звезды. Нейтронные звезды могут проявлять себя в виде рентгенеровских пульсаров. Плотность нейтронной звезды огромна ~1014 г/см3. Температура 109 К.
Нейтронные звезды возникают в процессе нейтронизации вещества, т.е. реакции слияния электронов и протонов с образованием нейтронов в ядрах и в свободном состоянии и испусканием нейтрино: . (2.164) Порог нейтронизации: Eс , (2.165) Мэв – энергия бета-распада нейтрона. При выполнении условия нейтронизации EF > Ec реакция (2.164) становится энергетически выгодной. Пример: Реакции нейтронизации и далее лишают звезду «электронной опоры». Давление электронного газа падает, и против силы тяготения действует только давление вырожденного газа нейтронов, обеспечивая гидростатическое равновесие нейтронной звезды. Масса нейтронной звезды с массой 1,5 массы Солнца имеет радиус около 10 км. Черная дыра - конечный продукт эволюции массивных звезд () и звездных скоплений() где -масса Солнца. Она возникает в результате сжатия звезды силами гравитационного притяжения до размеров меньше гравитационного радиуса .Даже свет не может покинуть звезду и она гаснет. Черная дыра обнаруживается по -излучению вещества соседних звезд которое падает на неё. Сверхмассивная черная дыра находится в центре нашей Галактики. Космические лучи Космические лучи –поток заряженных частиц высокой энергии, приходящих к Земле со всех направлений космического пространства. Важной особенностью космических лучей составляет нетепловое происхождение их энергий достигающих 1011 Гэв. Поток первичных космических лучей падающих на границу атмосферы составляет ~ 1 частицу/см2сек. Первичные космические лучи падающие на внешнюю границу атмосферы Земли состоят из солнечных космических лучей, галактических и метагалактических космических лучей. Вторичные космические лучи возникают внутри атмосферы Земли, при столкновении первичных космических лучей с атомами воздуха. Эти вторичные частицы образуются внутри защиты (атмосферы).
Существование космических лучей было установлено по ионизации воздуха с высотой над поверхностью Земли (В.Гесс, 1912 г.). Отклонение лучей в магнитном поле свидетельствует, что первичные лучи являются заряженными частицами. Их энергия лежит в диапазоне 106÷1020 эв. Поток первичных космических лучей падающих на границу атмосферы составляет ~1 частица/см2 сек. Состав космических лучей: протоны ~90%, ядра гелия ~7%, ядра элементов (10 <Z< 30) ~ 1%, электроны <1% с энергией1 Гэв и γ-кванты с интенсивностью ~10 фотон/м2сек и энергией 50 Мэв. Солнечные космические лучи в среднем имеют энергию< 400 Мэв и интенсивность при вспышке на Солнце ~106 част/см2сек. Первичные космические лучи в атмосфере создают ливни вторичных космических лучей, которые тратят свою энергию на ионизацию атмосферы. Средний массовый пробег протонов в атмосфере до ядерного взаимодействия составляет ≈ 80 г/см2, что составляет 1/13 часть всей толщины атмосферы. Вторичные космические лучи на уровне моря содержат ядерно-активную компоненту, мюонную компоненту, и электронно-фотонную компоненту (см. рис.2.25) Ядерно-активная компонента состоит из протонов, нейтронов и пионов. На уровне моря остается менее 1% ядерно-активных частиц. Жесткая мюонная и нейтринная компоненты образуются при распаде заряженных пионов . Высокоэнергетические мюоны обладают большой проникающей способностью, доходят до уровня моря и регистрируются на глубине 1 км. Мягкая электронно-фотонная компонента возникает при распаде нейтрального пиона . В кулоновском поле ядра каждый гамма-квант рождает электрон-позитронную пару . Источниками галактических космических лучей являются вспыхивающие сверхновые звезды. Космические лучи с энергиями 1017 эв ускоряются во внегалактических источника, например, за счет движущихся магнитных неоднородностей (модель Ферми). Основной вклад в радиационный фон у орбиты Земли вносят солнечные космические лучи и заряженные частицы, находящиеся в радиационных поясах Земли. Радиационные пояса Земли состоят из областей с высокой концентрацией протонов и электронов, которые удерживаются магнитным полем Земли, имеющим форму диполя, и охватывают Землю «как кожура яблоко». Изучение космических лучей дает ценные сведения об электромагнитных условиях в различных областях космического пространства. Сами космические лучи являются уникальным источником частиц сверхвысоких энергий не доступных современным ускорителям.
Рис.2.25. Протон первичного космического излучения сталкиваясь с атомом атмосферы рождает нуклоны и заряженные пионы образующие ядерно-активную компоненту вторичного излучения -3. Заряженные пи-мезоны распадаясь рождают мюонную и нейтринную компоненты 2. Нейтральные пионы распадаясь рождают каскады гамма-квантов образующие электрон-позитронные пары -1. «ЯДЕРНАЯ ФИЗИКА» Геологический факультет Экзаменационные вопросы по дисциплине «Ядерная физика»
|
||||||
Последнее изменение этой страницы: 2016-08-15; просмотров: 341; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.112.33 (0.013 с.) |