Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
При выполнении контрольных работ следует Номер рисунка выбирать по последней цифре шифра, а условие задачи в соответствующей таблице по предпоследней цифре шифра.Содержание книги
Поиск на нашем сайте
Пример: если шифр 892341, то при решении задачи К1 следует взять рисунок К1.1, а условие №4. Литература
1. Векторный способ задания движения точки. Задать движение, это значит - уметь определить положение точки в каждый момент времени. Векторный способ задания движения заключается в задании вектор функции: = (t). Подставляя в нее значения времени t , t ,..., получим вектора = (t ), = (t ),.., которые определяют положение точки в эти моменты времени (рис.1). Построить вектор можно только в некоторой системе координат. Векторный способ подразумевает наличие системы координат, но не конкретизирует ее, поэтому им пользуются при выводе теоретических положений. Линия, которую описывает точка при своем движении, называется траекторией. 2. Координатный способ задания движения точки. При этом способе задается 3 функции (при движении в пространстве), определяющие три координаты точки в каждый момент времени. Системы координат могут быть разными, например: прямоугольная декартова, цилиндрическая или сферическая система координат. В первом случае задается: х=х(t); y=у(t); z=z(t) - это и есть уравнения движения точки (рис.2). в цилиндрической системе координат (рис.3) задаются: ρ= ρ(t); φ= φ (t); z=z(t). В сферической (рис.4): φ = φ(t); θ= θ(t); r=r(t). если движение задано в какой - то из этих систем координат, то всегда можно перейти к заданию движения в любой из двух других. 3. Естественный способ задания движения точки. Он заключается в задании (рис.5): 1) траектории точки: у = f(х), 2) начала отсчета (точка О), 3) положительного направления отсчета, 4) закона движения s = s(t), где s - дуговая координата. Естественные оси координат. Естественные оси двигаются вместе с точкой и изменяют свое положение в пространстве. Этих осей три (рис.6): касательная, главная нормаль, бинормаль. Единичный вектор касательной - (тау) направлен по касательной к траектории в сторону положительного отсчета дуги. Соприкасающаяся плоскость - предельное положение плоскости, проходящей через т. М1, лежащую на кривой и касательную в т. М, при стремлении т. М1 к т. М. Единичный вектор главной нормали - перпендикулярен , лежит в соприкасающейся плоскости и направлен в сторону вогнутости траектории. Плоскость перпендикулярная касательной называется нормальной. Единичный вектор бинормали - перпендикулярен соприкасающейся плоскости и направлен в ту сторону, откуда вращение от к , по кратчайшему пути, видно происходящим против часовой стрелки. Плоскость (, ) называется спрямляющей. 5. Скорость при векторном способе задания движения. Пусть за время Δt точка переместилась из М в М (рис.7), вектор Δ - вектор перемещения. Средней скоростью точки за время Δt называется вектор ср = Δ /Δt. Скоростью точки в данный момент времени называется предел, к которому стремится отношение вектора перемещения к промежутку времени, за которое оно произошло, при стремлении последнего к нулю: = lim Δ /Δ t Δt Из рис. 7 видно, что: (t) + Δ = (t+Δt) тогда: Δ = (t+Δt) - (t), и = lim Δ /Δ t = lim( (t+Δt) - (t)) / Δ t = d / dt. Δt Δt то есть, скорость точки в данный момент времени равна первой производной от радиуса вектора по времени. Из рисунка видно, что вектор скорости в данный момент времени занимает положение касательной. Скорость измеряется в м/с. 6. Ускорение при векторном способе задания движения. Средним ускорением называется отношение вектора изменения скорости к промежутку времени, за которое оно произошло: ср=Δ /Δt. Ускорением точки в данный момент называется предел этого отношения при стремлении промежутка времени к нулю. = lim Δ /Δt = lim( (t+ Δt) - (t))/ Δt. Δt Δt Ускорение равно первой производной от скорости или второй производной от радиуса вектора по времени: = d /dt = d /dt . Ускорение ср, а значит и ускорение в данный момент времени - направлено в сторону вогнутости траектории (рис.8). Ускорение измеряется в м/с2. 7. Скорость при координатном способе задания движения. Известно, что: =d /dt,но =x· +y· +z· , тогда (т.к. , , - const): = dx/dt· +dy/dt· +dz/dt· , (1) С другой стороны: = v · +v · +v · . (2) сравнивая (1) и (2) получим: vх = dx/dt; vу = dy/dt; v = dz/dt, т.е. проекция скорости на ось равна первой производной от соответствующей координаты по времени. Зная проекции можно найти модуль скорости: = , а так же направляющие косинусы: соs(; ) = vx / | |; соs(; ) = vy / | |; соs(; ) = vz / | |. 8. Ускорение при координатном способе задания движения. Известно, что: = d /dt, но = vx· + vy· + vz· , тогда: = dv x /d t · +dvy /d t · +dvz /dz · , (1) с другой стороны: = ах · + ау · + аz· . (2) сравнивая (1) и (2) получим: а x =dv x /dt =d x / dt ; аy=dvy/ dt =d y / dt ; а =dvz /dt =d z / dt . то есть: проекция ускорения на ось равна первой производной от проекции скорости на ту же ось, или второй производной от соответствующей координаты по времени. Модуль ускорения: | | = , направляющие косинусы: соs (; ) = аx / | |; соs(; ) = аy / | |; соs (; ) = аz / | |.
|
||||
Последнее изменение этой страницы: 2016-08-14; просмотров: 266; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.70.108 (0.006 с.) |