Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Раздел 3. Электромагнитные волны

Поиск

Существование электромагнитных волн было теоретически предсказано великим английским физиком Дж. Максвеллом в 1864 году. Максвелл проанализировал все известные к тому времени законы электродинамики и сделал попытку применить их к изменяющимся во времени электрическому и магнитному полям. Он обратил внимание на ассиметрию взаимосвязи между электрическими и магнитными явлениями. Максвелл ввел в физику понятие вихревого электрического поля и предложил новую трактовку закона электромагнитной индукции, открытой Фарадеем в 1831 г.: Всякое изменение магнитного поля порождает в окружающем пространстве вихревое электрическое поле, силовые линии которого замкнуты.

Рисунок 1. Закон электромагнитной индукции в трактовке Максвелла.

 

Максвелл высказал гипотезу о существовании и обратного процесса: Изменяющееся во времени электрическое поле порождает в окружающем пространстве магнитное поле. Эта гипотеза была лишь теоретическим предположением, не имеющим экспериментального подтверждения, однако на её основе Максвеллу удалось записать непротиворечивую систему уравнений, описывающих взаимные превращения электрического и магнитного полей, т. е. систему уравнений электромагнитного поля (уравнений Максвелла).Рисунки 1 и 2 иллюстрируют взаимное превращение электрического и магнитного полей. Из теории Максвелла вытекает ряд важных выводов:

1. Существуют электромагнитные волны, то есть распространяющееся в пространстве и во времени электромагнитное поле. Электромагнитные волны поперечны – векторы Е и В перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны (рис 3). Синусоидальная (гармоническая) электромагнитная волна. Векторы , и взаимно перпендикулярны.

 

 

Рисунок 2. Гипотеза Максвелла. Изменяющееся электрическое поле порождает магнитное поле.

 

 

Рисунок 3.

 

 

2. Электромагнитные волны распространяются в веществе с конечной скоростью

Здесь ε и μ – диэлектрическая и магнитная проницаемости вещества, ε0 и μ0 – электрическая и магнитная постоянные: ε0 = 8,85419·10–12 Ф/м, μ0 = 1,25664·10–6 Гн/м.

Скорость электромагнитных волн в вакууме (ε = μ = 1):

Скорость c распространения электромагнитных волн (ЭМВ) в вакууме является одной из фундаментальных физических постоянных. Вывод Максвелла о конечной скорости распространения электромагнитных волн находился в противоречии с принятой в то время теорией дальнодействия, в которой скорость распространения электрического и магнитного полей принималась бесконечно большой. Поэтому теорию Максвелла называют теорией близкодействия.

3. В ЭМВ происходят взаимные превращения электрического и магнитного полей. Эти процессы идут одновременно, и электрическое и магнитное поля выступают как равноправные «партнеры». Поэтому объемные плотности электрической и магнитной энергии равны друг другу: wэ = wм.

Отсюда следует, что в электромагнитной волне модули индукции магнитного поля и напряженности электрического поля в каждой точке пространства связаны соотношением

4. ЭМВ переносят энергию. При распространении волн возникает поток электромагнитной энергии. Если выделить площадку S (рис. 3), ориентированную перпендикулярно направлению распространения волны, то за малое время Δt через площадку протечет энергия ΔWэм, равная

 

ΔWэм = (wэ + wм)υSΔt.

 

Плотностью потока или интенсивностью I называют электромагнитную энергию, переносимую волной за единицу времени через поверхность единичной площади:

Подставляя сюда выражения для wэ, wм и υ, можно получить:

 

Поток энергии в электромагнитной волне можно задавать с помощью вектора направление которого совпадает с направлением распространения волны, а модуль равен EB / μμ0. Этот вектор называют вектором Пойнтинга. В синусоидальной (гармонической) волне в вакууме среднее значение Iср плотности потока электромагнитной энергии равно

где E0 – амплитуда колебаний напряженности электрического поля. Плотность потока энергии в СИ измеряется в ваттах на квадратный метр (Вт/м2).

5. Из теории Максвелла следует, что ЭМВ должны оказывать давление на поглощающее или отражающее тело. Давление электромагнитного излучения объясняется тем, что под действием электрического поля волны в веществе возникают слабые токи, то есть упорядоченное движение заряженных частиц. На эти токи действует сила Ампера со стороны магнитного поля волны, направленная в толщу вещества. Эта сила и создает результирующее давление. Обычно давление электромагнитного излучения ничтожно мало. Так, например, давление солнечного излучения, приходящего на Землю, на абсолютно поглощающую поверхность составляет примерно 5 мкПа. Первые эксперименты по определению давления излучения на отражающие и поглощающие тела, подтвердившие вывод теории Максвелла, были выполнены П. Н. Лебедевым в 1900 г. Опыты Лебедева имели огромное значение для утверждения электромагнитной теории Максвелла.

Существование давления электромагнитных волн позволяет сделать вывод о том, что электромагнитному полю присущ механический импульс. Импульс электромагнитного поля в единичном объеме выражается соотношением

где wэм – объемная плотность электромагнитной энергии, c – скорость распространения волн в вакууме. Наличие электромагнитного импульса позволяет ввести понятие электромагнитной массы. Для поля в единичном объеме

Отсюда следует:

Это соотношение между массой и энергией электромагнитного поля в единичном объеме является универсальным законом природы. Согласно специальной теории относительности, оно справедливо для любых тел независимо от их природы и внутреннего строения.

Таким образом, электромагнитное поле обладает всеми признаками материальных тел – энергией, конечной скоростью распространения, импульсом, массой. Это говорит о том, что электромагнитное поле является одной из форм существования материи.

 

6. Первое экспериментальное подтверждение электромагнитной теории Максвелла было дано примерно через 15 лет после создания теории в опытах Г. Герца (1888 г.). Герц не только экспериментально доказал существованиеЭМВ, но впервые начал изучать их свойства – поглощение и преломление в разных средах, отражение от металлических поверхностей и т. д. Ему удалось измерить на опыте длину волны и скорость распространения электромагнитных волн, которая оказалась равной скорости света. Опыты Герца сыграли решающую роль для доказательства и признания электромагнитной теории Максвелла. Через семь лет после этих опытов электромагнитные волны нашли применение в беспроводной связи (А. С. Попов, 1895).

 

7. ЭМВ могут возбуждаться только ускоренно движущимися зарядами. Цепи постоянного тока, в которых носители заряда движутся с неизменной скоростью, не являются источником электромагнитных волн. В современной радиотехнике излучение ЭМВ производится с помощью антенн различных конструкций, в которых возбуждаются быстропеременные токи. Простейшей системой, излучающей электромагнитные волны, является небольшой по размерам электрический диполь, дипольный момент p (t) которого быстро изменяется во времени.

Такой элементарный диполь называют диполем Герца. В радиотехнике диполь Герца эквивалентен небольшой антенне, размер которой много меньше длины волны λ (рис. 4).

 

Рисунок 4. Элементарный диполь, совершающий гармонические колебания.

Рис. 5 дает представление о структуреЭМВ, излучаемой таким диполем.

Рисунок 5. Излучение элементарного диполя

 

Следует обратить внимание на то, что максимальный поток электромагнитной энергии излучается в плоскости, перпендикулярной оси диполя. Вдоль своей оси диполь не излучает энергии. Герц использовал элементарный диполь в качестве излучающей и приемной антенн при экспериментальном доказательстве существования электромагнитных волн. Среди электромагнитных полей вообще, порожденных электрическими зарядами и их движением, принято относить собственно к излучению ту часть переменных электромагнитных полей, которая способна распространяться наиболее далеко от своих источников — движущихся зарядов, затухая наиболее медленно с расстоянием.

Электромагнитное излучение подразделяется на: радиоволны (начиная со сверхдлинных), инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновское излучение и жесткое γ-излучение. Электромагнитное излучение способно распространяться практически во всех средах. В вакууме (пространстве, свободном от вещества и тел, поглощающих или испускающих ЭМВ) электро-магнитное излучение распространяется без затуханий на сколь угодно большие расстояния, но в ряде случаев достаточно хорошо распространяется и в пространстве, заполненном веществом (несколько изменяя при этом своё поведение).

 

Тема 1. Радиоволны

 

Радиоизлучение (радиоволны, радиочастоты) — электромагнитное излучение с длинами волн 5·10−5—1010 метров и частотами, соответственно, от 6·1012 Гц и до нескольких Гц. Радиоволны используются при передаче данных в радиосетях.

О радиоволнах впервые в своих работах в 1868 году рассказал Джеймс Максвелл. Он предложил уравнение, которое описывает световые и радиоволны, как волны электромагнетизма. В 1887 году Генрих Герц экспериментально подтвердил теорию Максвелла, получив в своей лаборатории радиоволны длиной в несколько десятков сантиметров.

Радиочастоты — частоты или полосы частот в диапазоне 3 кГц — 3000 ГГц, которым присвоены условные наименования. Этот диапазон соответствует частоте переменного тока электрических сигналов для вырабатывания и обнаружения радиоволн. Так как большая часть диапазона лежит за границами волн, которые могут быть получены при механической вибрации, радиочастоты обычно относятся к электромагнитным.

Обозн-е МСЭ Длины волн Название волн Диапазон частот Название частот Энергия фотона, эВ, Применение
ELF 100 Мм — 10 Мм Декамегаметровые 3—30 Гц Крайне низкие (КНЧ) 12.4 фэВ — 124 фэВ Связь с подводными лодками, геофизические исследования
SLF 10 Мм — 1 Мм Мегаметровые 30—300 Гц Сверхнизкие (СНЧ) 124 фэВ — 1,24 пэВ Связь с подводными лодками, геофизические исследования
ULF 1000 км — 100 км Гектокилометровые 300—3000 Гц Инфранизкие (ИНЧ) 1,24 пэВ — 12,4 пэВ  
VLF 100 км — 10 км Мириаметровые 3—30 кГц Очень низкие (ОНЧ) 12,4 пэВ — 124 пэВ Связь с подводными лодками
LF 10 км — 1 км Километровые 30—300 кГц Низкие (НЧ) 124 пэВ — 1,24 нэВ Радиовещание, радиосвязь
MF 1000 м — 100 м Гектометровые 300—3000 кГц Средние (СЧ) 1,24 нэВ — 12,4 нэВ Радиовещание, радиосвязь
HF 100 м — 10 м Декаметровые 3—30 МГц Высокие (ВЧ) 12,4 нэВ — 124 нэВ Радиовещание, радиосвязь, рации
VHF 10 м — 1 м Метровые волны 30—300 МГц Очень высокие (ОВЧ) 124 нэВ — 1,24 мкэВ Телевидение, радиовещание, радиосвязь, рации
UHF 1000 мм — 100 мм Дециметровые 300—3000 МГц Ультравысокие (УВЧ) 1,24 мкэВ — 12,4 мкэВ Телевидение, радиосвязь, Мобильные телефоны, рации, микроволновые печи
SHF 100 мм — 10 мм Сантиметровые 3—30 ГГц Сверхвысокие (СВЧ) 12,4 мкэВ — 124 мкэВ Радиолокация, спутниковое телевидение, радиосвязь, Беспроводные компьютерные сети, спутниковая навигация
EHF 10 мм — 1 мм Миллиметровые 30—300 ГГц Крайне высокие (КВЧ) 124 мкэВ — 1,24 мэВ Радиоастрономия, высокоскоростнаярадиорелейная связь, метеорологическиерадиолокаторы, медицина
THF 1 мм — 0,1 мм Децимиллиметровые 300—3000 ГГц Гипервысокие частоты, длинноволновая областьинфракрасного излучения 1,24 мэВ — 12,4 мэВ Экспериментальная «терагерцовая камера», регистрирующая изображение в длинноволновом ИК (которое излучается теплокровными организмами, но, в отличие от более коротковолнового ИК, не задерживается диэлектрическими материалами). Также «применяется» для построения наукообразных гипотез про «прямое зрение», «телепатию» и прочих, построенных на недоказанном предположении о якобы существующей чувствительности человеческого мозга к ГВЧ.

 



Поделиться:


Последнее изменение этой страницы: 2016-08-12; просмотров: 108; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.175.166 (0.011 с.)