Тема 2. Инфракрасное излучение 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Тема 2. Инфракрасное излучение



Инфракрасное излучение - электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны λ = 0,74 мкм) и микроволновым излучением (λ ~ 1—2 мм).

Оптические свойства веществ в инфракрасном излучении значительно отличаются от их свойств в видимом излучении. Например, слой воды в несколько сантиметров непрозрачен для инфракрасного излучения с λ = 1 мкм. Инфракрасное излучение составляет большую часть излучения ламп накаливания, газоразрядных ламп, около 50% излучения Солнца; инфракрасное излучение испускают некоторые лазеры. Для его регистрации пользуются тепловыми и фотоэлектрическими приемниками, а также специальными фотоматериалами.

Сейчас весь диапазон инфракрасного излучения делят на три составляющих:

1) коротковолновая область: λ = 0,74—2,5 мкм;

2) средневолновая область: λ = 2,5—50 мкм;

3) длинноволновая область: λ = 50—2000 мкм;

Последнее время длинноволновую окраину этого диапазона выделяют в отдельный, независимый диапазон электромагнитных волн — терагерцовое излучение (субмиллиметровое излучение).

Инфракрасное излучение также называют «тепловым» излучением, так как инфракрасное излучение от нагретых предметов воспринимается кожей человека как ощущение тепла. При этом длины волн, излучаемые телом, зависят от температуры нагревания: чем выше температура, тем короче длина волны и выше интенсивность излучения. Спектр излучения абсолютно чёрного тела при относительно невысоких (до нескольких тысяч Кельвинов) температурах лежит в основном именно в этом диапазоне. Инфракрасное излучение испускают возбуждённые атомы или ионы.

Инфракрасное излучение было открыто в 1800 году английским астрономом У. Гершелем. Занимаясь исследованием Солнца, Гершель искал способ уменьшения нагрева инструмента, с помощью которого велись наблюдения. Определяя с помощью термометров действия разных участков видимого спектра, Гершель обнаружил, что «максимум тепла» лежит за насыщенным красным цветом и, возможно, «за видимым преломлением». Это исследование положило начало изучению инфракрасного излучения.

Ранее лабораторными источниками инфракрасного излучения служили исключительно раскаленные тела либо электрические разряды в газах. Сейчас на основе твердотельных и молекулярных газовых лазеров созданы современные источники инфракрасного излучения с регулируемой или фиксированной частотой. Для регистрации излучения в ближней инфракрасной-области (до ~1,3 мкм) используются специальные фотопластинки. Более широким диапазоном чувствительности (примерно до 25 мкм) обладают фотоэлектрические детекторы и фоторезисторы. Излучение в дальней ИК-области регистрируется болометрами - детекторами, чувствительными к нагреву инфракрасным излучением.

ИК-аппаратура находит широкое применение как в военной технике (например, для наведения ракет), так и в гражданской (например, в волоконно-оптических системах связи). В качестве оптических элементов в ИК-спектрометрах используются либо линзы и призмы, либо дифракционные решетки и зеркала. Чтобы исключить поглощение излучения в воздухе, спектрометры для дальней ИК-области изготавливаются в вакуумном варианте.

Поскольку инфракрасные спектры связаны с вращательными и колебательными движениями в молекуле, а также с электронными переходами в атомах и молекулах, ИК-спектроскопия позволяет получать важные сведения о строении атомов и молекул, а также о зонной структуре кристаллов.

Применение: Инфракрасные лучи применяются в физиотерапии. Инфракрасные диоды и фотодиоды повсеместно применяются в пультах дистанционного управления, системах автоматики, охранных системах, некоторых мобильных телефонах (инфракрасный порт) и т. п. Инфракрасные лучи не отвлекают внимание человека в силу своей невидимости.

Интересно, что инфракрасное излучение бытового пульта дистанционного управления легко фиксируется с помощью цифрового фотоаппарата. Инфракрасные излучатели применяют в промышленности для сушки лакокрасочных поверхностей. Инфракрасный метод сушки имеет существенные преимущества перед традиционным, конвекционным методом. В первую очередь это, безусловно, экономический эффект. Скорость и затрачиваемая энергия при инфракрасной сушке меньше тех же показателей при традиционных методах. С помощью инфракрасного излучения стерилизируют пищевые продукты с целью дезинфекции. Инфракрасные лучи применяются с целью предотвращения коррозии поверхностей, покрываемых лаком.

Особенностью применения ИК-излучения в пищевой промышленности является возможность проникновения электромагнитной волны в такие капиллярно-пористые продукты, как зерно, крупа, мука и т. п. на глубину до 7 мм. Эта величина зависит от характера поверхности, структуры, свойств материала и частотной характеристики излучения. Электромагнитная волна определённого частотного диапазона оказывает не только термическое, но и биологическое воздействие на продукт, способствует ускорению биохимических превращений в биологических полимерах (крахмал, белок, липиды). Конвейерные сушильные транспортёры с успехом могут использоваться при закладке зерна в зернохранилища и в мукомольной промышленности.

Кроме того, инфракрасное излучение повсеместно применяют для обогрева помещений и уличных пространств. Инфракрасные обогреватели используются для организации дополнительного или основного отопления в помещениях (домах, квартирах, офисах и т. п.), а также для локального обогрева уличного пространства (уличные кафе, беседки, веранды).

Недостатком же является существенно большая неравномерность нагрева, что в ряде технологических процессов совершенно неприемлемо.

Инфракрасный излучатель применяется в приборах для проверки денег. Нанесенные на купюру как один из защитных элементов, специальные метамерные краски возможно увидеть исключительно в инфракрасном диапазоне. Инфракрасные детекторы валют являются самыми безошибочными приборами для проверки денег на подлинность. Нанесение на купюру инфракрасных меток, в отличие от ультрафиолетовых, фальшивомонетчикам обходится дорого и соответственно экономически невыгодно. Потому детекторы банкнот со встроенным ИК излучателем, на сегодняшний день, являются самой надежной защитой от подделок.

Сильное инфракрасное излучение в местах высокого нагрева может вызывать опасность для глаз. Наиболее опасно, когда излучение не сопровождается видимым светом. В таких местах необходимо надевать специальные защитные очки для глаз.

 

Тема 3. Видимое излучение

Видимое излучение — электромагнитные волны, воспринимаемые человеческим глазом, которые занимают участок спектра с длинами волн приблизительно от 380 (фиолетовый) до 780 нм (красный). Такие волны занимают частотный диапазон от 400 до 790 терагерц. Электромагнитное излучение с такими длинами волн также называется видимым светом, или просто светом (в узком смысле этого слова). Наибольшую чувствительность к свету человеческий глаз имеет в области 555 нм (540 ТГц), в зелёной части спектра.

В спектре содержатся не все цвета, которые различает человеческий мозг. Таких оттенков, как розовый или маджента, нет в спектре видимого излучения, они образуются от смешения других цветов.

Видимое излучение также попадает в «оптическое окно», область спектра электромагнитного излучения, практически не поглощаемая земной атмосферой. Чистый воздух рассеивает голубой свет несколько сильнее, чем свет с большими длинами волн (в красную сторону спектра), поэтому полуденное небо выглядит голубым.

Многие виды животных способны видеть излучение, не видимое человеческому глазу, то есть не входящему в видимый диапазон. Например, пчёлы и многие другие насекомые видят свет в ультрафиолетовом диапазоне, что помогает им находить нектар на цветах. Растения, опыляемые насекомыми, оказываются в более выгодном положении с точки зрения продолжения рода, если они ярки именно в ультрафиолетовом спектре. Птицы также способны видеть ультрафиолетовое излучение (300—400 нм), а некоторые виды имеют даже метки на оперении для привлечения партнёра, видимые только в ультрафиолете.

Первые объяснения спектра видимого излучения дали Исаак Ньютон в книге «Оптика» и Иоганн Гёте в работе «Теория Цветов», однако ещё до них Роджер Бэкон наблюдал оптический спектр в стакане с водой. Лишь спустя четыре века после этого Ньютон открыл дисперсию света в призмах.

Ньютон первый использовал слово спектр (лат. spectrum — видение, появление) в печати в 1671 году, описывая свои оптические опыты. Он сделал наблюдение, что когда луч света падает на поверхность стеклянной призмы под углом к поверхности, часть света отражается, а часть проходит через стекло, образуя разноцветные полосы. Учёный предположил, что свет состоит из потока частиц (корпускул) разных цветов, и что частицы разного цвета движутся с различной скоростью в прозрачной среде. По его предположению, красный свет двигался быстрее чем фиолетовый, поэтому и красный луч отклонялся на призме не так сильно, как фиолетовый. Из-за этого и возникал видимый спектр цветов.

Ньютон разделил свет на семь цветов: красный, оранжевый, жёлтый, зелёный, голубой, индиго и фиолетовый. Число семь он выбрал из убеждения (происходящего от древнегреческих софистов), что существует связь между цветами, музыкальными нотами, объектами Солнечной системы и днями недели. Человеческий глаз относительно слабо восприимчив к частотам цвета индиго, поэтому некоторые люди не могут отличить его от голубого или фиолетого цвета. Поэтому после Ньютона часто предлагалось считать индиго не самостоятельным цветом, а лишь оттенком фиолетового или голубого (однако он до сих пор включён в спектр в западной традиции). В русской традиции индиго соответствует синему цвету.

Гёте, в отличие от Ньютона, считал, что спектр возникает при наложении разных составных частей света. Наблюдая за широкими лучами света, он обнаружил, что при проходе через призму, на краях луча проявляются красно-желтые и голубые края, между которыми свет остаётся белым, а спектр появляется, если приблизить эти края достаточно близко друг к другу.

В XIX веке, после открытия ультрафиолетового и инфракрасного излучений, понимание видимого спектра стало более точным.

В начале XIX века Томас Юнг и Герман фон Гельмгольц также исследовали взаимосвязь между спектром видимого излучения и цветным зрением. Их теория цветного зрения верно предполагала, что для определения цвета глаз использует три различных вида рецепторов.

 

Характеристики границ видимого излучения

Длина волны, нм    
Энергия фотонов, Дж 2,61·10−19 4,97·10−19
Энергия фотонов, эВ 1,6 3,1
Частота, Гц 3,94·1014 7,49·1014
Волновое число, см−1 1,32·104 2,50·104

При разложении луча белого цвета в призме образуется спектр, в котором излучения разных длин волн преломляются под разным углом. Цвета, входящие в спектр, то есть такие цвета, которые могут быть получены световыми волнами одной длины (или очень узким диапазоном), называются спектральными цветами. Основные спектральные цвета (имеющие собственное название), а также характеристики излучения этих цветов, представлены в таблице:

Цвет Диапазон длин волн, нм Диапазон частот, ТГц Диапазон энергии фотонов, эВ
Фиолетовый 380—440 790—680 2,82—3,26
Синий 440—485 680—620 2,56—2,82
Голубой 485—500 620—600 2,48—2,56
Зелёный 500—565 600—530 2,19—2,48
Жёлтый 565—590 530—510 2,10—2,19
Оранжевый 590—625 510—480 1,98—2,10
Красный 625—740 480—400 1,68—1,98

 



Поделиться:


Последнее изменение этой страницы: 2016-08-12; просмотров: 57; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.9.141 (0.011 с.)