Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Раздел 1. Механические колебания

Поиск

ВВЕДЕНИЕ

Колебания и волны являются неотъемлемой частью жизни людей и большинства животных. Именно волны находятся в основе сердечных процессов, благодаря которым человек существует. Кровь циркулирует по телу, подгоняемая сокращениями сердца. А мышечные сокращение – это колебательные движения. Когда одна область начинает колебаться между разными состояниями, она неизбежно затрагивает соседнюю область – возникает движение. Биение сердца происходит благодаря низковольтному разряду электрического тока, который постоянно проходит через клети. Еще одним ярким примером волн в организме является перистальтическая волна, которая подхватывает пищу во время глотания и направляет через пищевод в желудок. Эта же самая волна мышечных сокращений двигает пищу из желудка дальше в тонкий кишечник, где питательные вещества всасываются.

Работа мозга также не обходится без участия волн. Но это не волновые сокращения мышц, а крошечные, длящиеся всего долю секунды электрохимические реакции – импульсация нейронов. Любые звуки являются акустическими волнами. Нам доступна лишь малая часть всех акустических волн – большая часть не воспринимается нашим ухом.

Также волны могут нести в себе информационную составляющую. Микроволновое излучение уже поведало много интересного о происхождении и составе Вселенной, а также позволило человечеству греть еду в «микроволновке», говорить по сотовому телефону, выходить с ноутбуков в Интернет, устанавливать беспроводные соединения с помощью Bluetooth, дало возможность GPS-навигации и осуществление связи Земли со спутниками в целом.

Помимо полезных и необходимых для нормальной жизнедеятельности волн встречаются волны губительные. Взрывная волна сильно влияет на деятельность мозга даже при отсутствии видимых внешних повреждений. Цунами уносят сотни тысяч жизней и смывают прибрежные районы, оставляя за собой полную разруху.

Исходя из всего перечисленного выше, можно сделать вывод, что знание закономерностей, природы, свойств колебаний и волн дает возможность улучшать качества жизни, выходить на новые технологические уровни, своевременно заботиться о здоровье человека и животных, предотвращать или предсказывать природные катаклизмы. На что и нацелено данное методическое пособие.

 

Тема 2. Затухающие колебания

Затухающие колебания — колебания, энергия которых уменьшается с течением времени. Бесконечно длящийся процесс вида в природе невозможен. Свободные колебания любого осциллятора рано или поздно затухают и прекращаются. Поэтому на практике обычно имеют дело с затухающими колебаниями. Они характеризуются тем, что амплитуда колебаний A является убывающей функцией. Обычно затухание происходит под действием сил сопротивления среды, наиболее часто выражаемых линейной зависимостью от скорости колебаний или её квадрата.

График затухающих колебаний (меняется по экспоненте):

Тема 4. Сложные колебания

Всякое сложное колебание состоит из ряда простых синусоидальных колебаний - основного и высших гармоник. Форма сложного колебания может быть самой различной, в зависимости от того, сколько гармоник входит в его состав, какие у них частоты, амплитуды и начальные фазы. Примером сложных колебаний служит электрокардиограмма и электроэнцефалограмма.

Электрокардиограмма в 12 стандартных отведениях у мужчины 26 лет, без патологии.

 

 

Раздел 2. УПРУГИЕ ВОЛНЫ.

Если в каком-либо месте упругой (твердой, жидкой или газообразной) среды возбудить колебания ее частиц, то вследствие взаимодействия между частицами это колебание будет распространяться в среде от частицы к частице с некоторой скоростью v. Процесс распространения колебаний в пространстве называется волной.

Механизм возникновения волн. На рисунке показано движение частиц при распространении в среде поперечной волны. Номерами 1, 2 и т.д. обозначены частицы, отстоящие друг от друга на расстоянии 1/4 T, т.е. расстояние, проходимое волной за четверть периода колебаний, совершаемых частицами. В момент времени, принятый за нулевой, волна, распространяясь вдоль оси слева направо, достигла частицы 1, вследствие чего частица начала смещаться из положения равновесия вверх, увлекая за собой следующие частицы. Спустя четверть периода частица 1 достигнет крайнего верхнего положения; одновременно начинает смещаться из положения равновесия частица 2. По прошествии еще четверти периода частица 1 будет проходить положение равновесия, двигаясь в направлении сверху вниз, вторая частица 2 достигнет крайнего верхнего положения, а частица 3 начнет смещаться вверх из положения равновесия. В момент времени, равный T, частица 1 закончит полный цикл колебания, и будет находиться в таком же состоянии движения, как и в начальный момент времени. Волна к моменту времени T достигнет частицы 5.

На рисунке показаны колебания частиц, положения, равновесия которых лежат на оси x. В действительности колеблются не только частицы, расположенные вдоль оси x, а совокупность частиц в некотором объёме. Распространяясь от источника колебаний, волновой процесс охватывает всё новые и новые части пространства. Геометрическое место точек, до которых доходят колебания к моменту времени t, называется фронтом волны (или волновым фронтом).

Геометрическое место точек, колеблющихся в одинаковой фазе, называется волновой поверхностью. Волновую поверхность можно провести через любую точку пространства, охваченного волновым процессом. Следовательно, волновых поверхностей существует бесконечное множество, в то время как волновой фронт каждый момент времени только один. Волновые поверхности могут быть любой формы. В простейших случаях они имеют форму плоскости или сферы. Соответственно волна в этих случаях называется плоской или сферической.

 

Расстояние λ, на которое распространяется волна за время, равное периоду колебания частиц среды, называется длиной волны. Очевидно, что: λ= vT,

где v - скорость волны, T - период колебаний. Длину волны можно определить также как расстояние между ближайшими точками среды, колеблющихся с разностью фаз, равной 2π. Заменив T через 1/ν, где v - частота колебаний, получим связь между длиной волны, частотой колебаний и скоростью распространения волны: λν=v.

Продольная волна – это волна, в которой частицы среды колеблются вдоль направления распространения волны. Поперечная - это волна, в которой частицы среды колеблются в направлениях, перпендикулярных к направлению распространения волны. Когда две одинаковые волны с равными амплитудами и периодами распространяются навстречу друг другу, то при их наложении возникают стоячие волны. Стоячие волны могут быть получены при отражении от препятствий. Допустим, излучатель посылает волну к препятствию (падающая волна). Отраженная от него волна наложится на падающую волну.

 

Тема 1. Интерференция

Интерференция волн — взаимное усиление или ослабление амплитуды двух или нескольких когерентных волн, одновременно распространяющихся в пространстве. Волны и возбуждающие их источники называются когерентными, если разность фаз волн (φ21)не зависит от времени.

Волны при встрече могут усилить или ослабить друг друга.

Интерференция сопровождается чередованием максимумов и минимумов (пучностей) интенсивности в пространстве. Результат интерференции (интерференционная картина) зависит от разности фаз накладывающихся волн. Интерферировать могут все волны, однако устойчивая интерференционная картина будет наблюдаться только в том случае, если волны имеют одинаковую частоту и колебания в них не ортогональны. Интерференция может быть стационарной и нестационарной. Стационарную интерференционную картину могут давать только полностью когерентные волны. Например, две сферические волны на поверхности воды, распространяющиеся от двух когерентных точечных источников, при интерференции дадут результирующую волну, фронтом которой будет сфера.

Первым интерференционным опытом, получившим объяснение на основе волновой теории света, явился опыт Юнга (1802 г.). В опыте Юнга свет от источника, в качестве которого служила узкая щель S, падал на экран с двумя близко расположенными щелями S1 и S2 (рис. 1). Проходя через каждую из щелей, световой пучок уширялся вследствие дифракции, поэтому на белом экране Э световые пучки, прошедшие через щели S1 и S2, перекрывались. В области перекрытия световых пучков наблюдалась интерференционная картина в виде чередующихся светлых и темных полос.

1)

 

Юнг был первым, кто понял, что нельзя наблюдать интерференцию при сложении волн от двух независимых источников. Поэтому в его опыте щели S1 и S2, которые в соответствии с принципом Гюйгенса можно рассматривать как источники вторичных волн, освещались светом одного источника S. При симметричном расположении щелей вторичные волны, испускаемые источниками S1 и S2, находятся в фазе, но эти волны проходят до точки наблюдения P разные расстояния r1 и r2. Следовательно, фазы колебаний, создаваемых волнами от источников S1 и S2 в точке P, вообще говоря, различны. Таким образом, задача об интерференции волн сводится к задаче о сложении колебаний одной и той же частоты, но с разными фазами. Утверждение о том, что волны от источников S1 и S2 распространяются независимо друг от друга, а в точке наблюдения они просто складываются, является опытным фактом и носит название принципа суперпозиции.

Тема 3. Дифракция

Дифракция волн (лат. diffractus — буквально разломанный, переломанный, огибание препятствия волнами) — явление, которое проявляет себя как отклонение от законов геометрической оптики при распространении волн. Она представляет собой универсальное волновое явление и характеризуется одними и теми же законами при наблюдении волновых полей разной природы. Дифракция неразрывно связана с явлением интерференции. Более того, само явление дифракции зачастую трактуют как случай интерференции ограниченных в пространстве волн (интерференция вторичных волн). Общим свойством всех эффектов дифракции является зависимость степени её проявления от соотношения между длиной волны λ и характерным размером неоднородностей среды d, либо неоднородностей структуры самой волны. Наиболее заметно они проявляются при размерах неоднородностей, сравнимых с длиной волны. При размерах неоднородностей, существенно превышающих длину волны (на 3—4 порядка и более), явлением дифракции, как правило, можно пренебречь. В последнем случае распространение волн с высокой степенью точности описывается законами геометрической оптики. С другой стороны, если размер неоднородностей среды много меньше длины волны, то в таком случае дифракции проявляет себя в виде эффекта рассеяния волн.

Изначально явление дифракции трактовалось как огибание волной препятствия, то есть проникновение волны в область геометрической тени. С точки зрения современной науки определение дифракции как огибания светом препятствия признается недостаточным (слишком узким) и не вполне адекватным. Так, с дифракцией связывают весьма широкий круг явлений, возникающих при распространении волн (в случае учёта их пространственного ограничения) в неоднородных средах. Дифракция волн может проявляться:

1) в преобразовании пространственной структуры волн. В одних случаях такое преобразование можно рассматривать как «огибание» волнами препятствий, в других случаях — как расширение угла распространения волновых пучков или их отклонение в определённом направлении;

2) в разложении волн по их частотному спектру;

3) в преобразовании поляризации волн;

4) в изменении фазовой структуры волн.

Дифракция первого и второго порядка как интерференция волн, образованных при падении плоской волны на непрозрачный экран с парой щелей. Стрелками показаны линии, проходящие через линии интерференционных максимумов.

Тема 4. Звуковые волны

Звук, в широком смысле — упругие волны, распространяющиеся в какой-либо упругой среде и создающие в ней механические колебания; в узком смысле — субъективное восприятие этих колебаний специальными органами чувств животных или человека.

Как и любая волна, звук характеризуется амплитудой и спектром частот. Обычно человек слышит звуки, передаваемые по воздуху, в диапазоне частот от 16—20 Гц до 15—20 кГц. Звук ниже диапазона слышимости человека называют инфразвуком; выше: до 1 ГГц, — ультразвуком, от 1 ГГц — гиперзвуком. Среди слышимых звуков следует также особо выделить фонетические, речевые звуки и фонемы (из которых состоит устная речь) и музыкальные звуки (из которых состоит музыка). Различают продольные и поперечные звуковые волны в зависимости от соотношения направления распространения волны и направления механических колебаний частиц среды распространения.

Если произвести резкое смещение частиц упругой среды в одном месте, например, с помощью поршня, то в этом месте увеличится давление. Вследствие упругих связей между частицами давление передаётся на соседние, которые, в свою очередь, воздействуют на следующие, и область повышенного давления как бы перемещается в упругой среде. За областью повышенного давления следует область пониженного давления, и, таким образом, образуется ряд чередующихся областей сжатия и разрежения, распространяющихся в среде в виде волны. Каждая частица упругой среды в этом случае будет совершать колебательные движения.

В жидких и газообразных средах, где отсутствуют значительные колебания плотности, акустические волны имеют продольный характер, то есть направление колебания частиц совпадает с направлением перемещения волны. В твёрдых телах, помимо продольных деформаций, возникают также упругие деформации сдвига, обусловливающие возбуждение поперечных (сдвиговых) волн; в этом случае частицы совершают колебания перпендикулярно направлению распространения волны. Скорость распространения продольных волн значительно больше скорости распространения сдвиговых волн.

Колебательная скорость измеряется в м/с или см/с. В энергетическом отношении реальные колебательные системы характеризуются изменением энергии вследствие частичной её затраты на работу против сил трения и излучение в окружающее пространство. В упругой среде колебания постепенно затухают. Для характеристики затухающих колебаний используются коэффициент затухания (S), логарифмический декремент (D) и добротность (Q).

Коэффициент затухания отражает быстроту убывания амплитуды с течением времени. Если обозначить время, в течение которого амплитуда уменьшается в е = 2,718 раза, через τ то:

S= 1/τ.

Уменьшение амплитуды за один цикл характеризуется логарифмическим декрементом. Логарифмический декремент равен отношению периода колебаний ко времени затухания τ

D= T/τ

Если на колебательную систему с потерями действовать периодической силой, то возникают вынужденные колебания, характер которых в той или иной мере повторяет изменения внешней силы. Частота вынужденных колебаний не зависит от параметров колебательной системы. Напротив, амплитуда зависит от массы, механического сопротивления и гибкости системы. Такое явление, когда амплитуда колебательной скорости достигает максимального значения, называется механическим резонансом. При этом частота вынужденных колебаний совпадает с частотой собственных незатухающих колебаний механической системы.

При частотах воздействия, значительно меньших резонансной, внешняя гармоническая сила уравновешивается практически только силой упругости. При частотах возбуждения, близких к резонансной, главную роль играют силы трения. При условии, когда частота внешнего воздействия значительно больше резонансной, поведение колебательной системы зависит от силы инерции или массы.

Свойство среды проводить акустическую энергию, в том числе и ультразвуковую, характеризуется акустическим сопротивлением. Акустическое сопротивление среды выражается отношением звуковой плотности к объёмной скорости ультразвуковых волн. Удельное акустическое сопротивление среды устанавливается соотношением амплитуды звукового давления в среде к амплитуде колебательной скорости её частиц. Чем больше акустическое сопротивление, тем выше степень сжатия и разрежения среды при данной амплитуде колебания частиц среды. Численно, удельное акустическое сопротивление среды (Z) находится как произведение плотности среды (ρ) на скорость (с) распространения в ней ультразвуковых волн: Z=ρc

Удельное акустическое сопротивление измеряется в паскаль-секунда на метр (Па·с/м) или дин•с/см³ (СГС); 1 Па·с/м = 10−1 дин • с/см³. Значение удельного акустического сопротивления среды часто выражается в г/с·см², причём 1 г/с·см² = 1 дин•с/см³. Акустическое сопротивление среды определяется поглощением, преломлением и отражением ультразвуковых волн.

Звуковое или акустическое давление в среде представляет собой разность между мгновенным значением давления в данной точке среды при наличии звуковых колебаний и статического давления в той же точке при их отсутствии. Иными словами, звуковое давление есть переменное давление в среде, обусловленное акустическими колебаниями. Максимальное значение переменного акустического давления (амплитуда давления) может быть рассчитано через амплитуду колебания частиц:

P=2πνρcA

где Р — максимальное акустическое давление (амплитуда давления);

ν — частота;

с — скорость распространения ультразвука;

ρ— плотность среды;

А — амплитуда колебания частиц среды.

На расстоянии половины длины волны (λ/2) амплитудное значение давления из положительного становится отрицательным. Разница давлений в двух точках, отстоящих друг от друга на λ/2 пути распространения волны, равна 2Р.

Для выражения звукового давления в единицах СИ используется Паскаль (Па), равный давлению в один ньютон на метр квадратный (Н/м²). Звуковое давление в системе СГС измеряется в дин/см²; 1 дин/см² = 10−1Па = 10−1Н/м². Наряду с указанными единицами часто пользуются внесистемными единицами давления — атмосфера (атм) и техническая атмосфера (ат), при этом 1 ат = 0,98·106 дин/см² = 0,98·105 Н/м². Иногда применяется единица, называемая баром или микробаром (акустическим баром); 1 бар = 106 дин/см².

Давление, оказываемое на частицы среды при распространении волны, является результатом действия упругих и инерционных сил. Последние вызываются ускорениями, величина которых также растёт в течение периода от нуля до максимума (амплитудное значение ускорения). Кроме того, в течение периода ускорение меняет свой знак. Максимальные значения величин ускорения и давления, возникающие в среде при прохождении в ней ультразвуковых волн, для данной частицы не совпадают во времени. В момент, когда перепад ускорения достигает своего максимума, перепад давления становится равным нулю. Амплитудное значение ускорения (а) определяется выражением:

a= 2Aω = 2A(2πν)

 

Скорость звука. Скорость звука — скорость распространения звуковых волн в среде. Как правило, в газах скорость звука меньше, чем в жидкостях, а в жидкостях скорость звука меньше, чем в твёрдых телах, что связано в основном с убыванием сжимаемости веществ в этих фазовых состояниях соответственно. В среднем в идеальных условиях в воздухе скорость звука составляет 340—344 м/с. Скорость звука в любой среде вычисляется по формуле:

,

где β— адиабатическая сжимаемость среды; ρ— плотность.

Громкость звука. Громкость звука - субъективное восприятие силы звука (абсолютная величина слухового ощущения). Громкость главным образом зависит от звукового давления, амплитуды и частоты звуковых колебаний. Также на громкость звука влияют его спектральный состав, локализация в пространстве, тембр, длительность воздействия звуковых колебаний, индивидуальная чувствительность слухового анализатора человека и другие факторы.

Генерация звука. Обычно для генерации звука применяются колеблющиеся тела различной природы, вызывающие колебания окружающего воздуха. Примером такой генерации может служить использование голосовых связок, динамиков или камертона. Большинство музыкальных инструментов основано на том же принципе. Исключением являются духовые инструменты, в которых звук генерируется за счёт взаимодействия потока воздуха с неоднородностями в инструменте. Для создания когерентного звука применяются так называемые звуковые или фононные лазеры.

 

Тема 5. Ультразвук

Ультразвук — упругие звуковые колебания высокой частоты. Человеческое ухо воспринимает распространяющиеся в среде упругие волны частотой приблизительно до 16 Гц-20 кГц; колебания с более высокой частотой представляют собой ультразвук (за пределом слышимости).

 

Распространение ультразвука — это процесс перемещения в пространстве и во времени возмущений, имеющих место в звуковой волне.

Звуковая волна распространяется в веществе, находящемся в газообразном, жидком или твёрдом состоянии, в том же направлении, в котором происходит смещение частиц этого вещества, то есть она вызывает деформацию среды. Деформация заключается в том, что происходит последовательное разряжение и сжатие определённых объёмов среды, причём расстояние между двумя соседними областями соответствует длине ультразвуковой волны. Чем больше удельное акустическое сопротивление среды, тем больше степень сжатия и разряжения среды при данной амплитуде колебаний.

Частицы среды, участвующие в передаче энергии волны, колеблются около положения своего равновесия. Скорость, с которой частицы колеблются около среднего положения равновесия называется колебательной скоростью. Колебательная скорость частиц изменяется согласно уравнению:

,

где V — величина колебательной скорости;

U — амплитуда колебательной скорости;

f — частота ультразвука;

t — время;

G — разность фаз между колебательной скоростью частиц и переменным акустическим давлением.

Амплитуда колебательной скорости характеризует максимальную скорость, с которой частицы среды движутся в процессе колебаний, и определяется частотой колебаний и амплитудой смещения частиц среды.

 

При распространении ультразвуковых волн возможны явления дифракции, интерференции и отражения.

Дифракция (огибание волнами препятствий) имеет место тогда, когда длина ультразвуковой волны сравнима (или больше) с размерами находящегося на пути препятствия. Если препятствие по сравнению с длиной акустической волны велико, то явления дифракции нет.

При одновременном движении в среде нескольких ультразвуковых волн в каждой определённой точке среды происходит суперпозиция (наложение) этих волн. Наложение волн одинаковой частоты друг на друга называется интерференцией. Если в процессе прохождения через объект ультразвуковые волны пересекаются, то в определённых точках среды наблюдается усиление или ослабление колебаний. При этом состояние точки среды, где происходит взаимодействие, зависит от соотношения фаз ультразвуковых колебаний в данной точке. Если ультразвуковые волны достигают определённого участка среды в одинаковых фазах (синфазно), то смещения частиц имеют одинаковые знаки и интерференция в таких условиях приводит к увеличению амплитуды колебаний. Если же волны приходят к точке среды в противофазе, то смещение частиц будет разнонаправленным, что приводит к уменьшению амплитуды колебаний.

Если среда, в которой происходит распространение ультразвука, обладает вязкостью и теплопроводностью или в ней имеются другие процессы внутреннего трения, то при распространении волны происходит поглощение звука, то есть по мере удаления от источника амплитуда ультразвуковых колебаний становится меньше, так же как и энергия, которую они несут. Среда, в которой распространяется ультразвук, вступает во взаимодействие с проходящей через него энергией и часть её поглощает. Преобладающая часть поглощенной энергии преобразуется в тепло, меньшая часть вызывает в передающем веществе необратимые структурные изменения. Поглощение является результатом трения частиц друг об друга, в различных средах оно различно. Поглощение зависит также от частоты ультразвуковых колебаний. Теоретически, поглощение пропорционально квадрату частоты.

Величину поглощения можно характеризовать коэффициентом поглощения, который показывает, как изменяется интенсивность ультразвука в облучаемой среде. С ростом частоты он увеличивается. Интенсивность ультразвуковых колебаний в среде уменьшается по экспоненциальному закону. Этот процесс обусловлен внутренним трением, теплопроводностью поглощающей среды и её структурой. Его ориентировочно характеризует величина полупоглощающего слоя, которая показывает на какой глубине интенсивность колебаний уменьшается в два раза (точнее в 2,718 раза или на 63 %). По Пальману при частоте, равной 0,8 МГц средние величины полупоглощающего слоя для некоторых тканей таковы: жировая ткань — 6,8 см; мышечная — 3,6 см; жировая и мышечная ткани вместе — 4,9 см. С увеличением частоты ультразвука величина полупоглощающего слоя уменьшается. Так при частоте, равной 2,4 МГц, интенсивность ультразвука, проходящего через жировую и мышечную ткани, уменьшается в два раза на глубине 1,5 см.

Кроме того, возможно аномальное поглощение энергии ультразвуковых колебаний в некоторых диапазонах частот — это зависит от особенностей молекулярного строения данной ткани. Известно, что 2/3 энергии ультразвука затухает на молекулярном уровне и 1/3 на уровне микроскопических тканевых структур.

Под глубиной проникновения ультразвука понимают глубину, при которой интенсивность уменьшается на половину. Эта величина обратно пропорциональна поглощению: чем сильнее среда поглощает ультразвук, тем меньше расстояние, на котором интенсивность ультразвука ослабляется наполовину.

Если в среде имеются неоднородности, то происходит рассеяние звука, которое может существенно изменить простую картину распространения ультразвука и, в конечном счете, также вызвать затухание волны в первоначальном направлении распространения.

Так как акустическое сопротивление мягких тканей человека ненамного отличается от сопротивления воды, можно предполагать, что на границе раздела сред (эпидермис — дерма — фасция — мышца) будет наблюдаться преломление ультразвуковых волн.

На явлении отражения основана ультразвуковая диагностика. Отражение происходит в приграничных областях кожи и жира, жира и мышц, мышц и костей. Если ультразвук при распространении наталкивается на препятствие, то происходит отражение, если препятствие мало, то ультразвук его как бы обтекает. Неоднородности организма не вызывают значительных отклонений, так как по сравнению с длиной волны (2 мм) их размерами (0,1—0,2 мм) можно пренебречь. Если ультразвук на своём пути наталкивается на органы, размеры которых больше длины волны, то происходит преломление и отражение ультразвука. Наиболее сильное отражение наблюдается на границах кость — окружающие её ткани и ткани — воздух. У воздуха малая плотность и наблюдается практически полное отражение ультразвука. Отражение ультразвуковых волн наблюдается на границе мышца — надкостница — кость, на поверхности полых органов.

Если при распространении ультразвуковых волн в среде не происходит их отражения, образуются бегущие волны. В результате потерь энергии колебательные движения частиц среды постепенно затухают, и чем дальше расположены частицы от излучающей поверхности, тем меньше амплитуда их колебаний. Если же на пути распространения ультразвуковых волн имеются ткани с разными удельными акустическими сопротивлениями, то в той или иной степени происходит отражение ультразвуковых волн от пограничного раздела. Наложение падающих и отражающихся ультразвуковых волн может приводить к возникновению стоячих волн. Для возникновения стоячих волн расстояние от поверхности излучателя до отражающей поверхности должно быть кратным половине длины волны.

Тема 6. Инфразвук

Инфразвук (от лат. infra — ниже, под) — упругие волны, имеющие частоту ниже воспринимаемой человеческим ухом. За верхнюю границу частотного диапазона инфразвука обычно принимают 16—25 Гц. Нижняя же граница инфразвукового диапазона условно определена как 0,001 Гц. Практический интерес могут представлять колебания от десятых и даже сотых долей герц, то есть с периодами в десяток секунд. Природа возникновения инфразвуковых колебаний такая же, как и у слышимого звука, поэтому инфразвук подчиняется тем же закономерностям, и для его описания используется такой же математический аппарат, как и для обычного слышимого звука (кроме понятий, связанных с уровнем звука). Инфразвук слабо поглощается средой, поэтому может распространяться на значительные расстояния от источника. Из-за очень большой длины волны ярко выражена дифракция.

Естественные источники. Возникает при землетрясениях, во время бурь и ураганов, цунами. При помощи достаточно сильных инфразвуков (более 60 дБ) общаются между собой киты.

Техногенные источники. К основным техногенным источникам инфразвука относится мощное оборудование — станки, котельные, транспорт, подводные и подземные взрывы. Кроме того, инфразвук излучают ветряные электростанции и, в некоторых случаях, вентиляционные шахты.

Для инфразвука характерно малое поглощение в различных средах, вследствие чего инфразвуковые волны в воздухе, воде и в земной коре могут распространяться на очень далёкие расстояния. Инфразвук может служить предвестником бурь, ураганов, цунами. Это явление находит практическое применение при определении места сильных взрывов или положения стреляющего орудия. Звуки взрывов, содержащие большое количество инфразвуковых частот, применяются для исследования верхних слоев атмосферы, свойств водной среды.

Органы человека, как и любое физическое тело, имеют собственную резонансную частоту. Под воздействием звука с этой частотой они могут испытывать внутреннее изменение структуры, вплоть до потери собственной работоспособности. Предполагается, что на этом принципе может быть создано инфразвуковое оружие. Также при совпадении воздействующего звука с ритмами мозга, такими как α- ритм, β-ритм, γ- ритм, δ- ритм, θ- ритм, κ- ритм, μ- ритм, σ- ритм и др., может возникнуть нарушение активности церебральных механизмов мозга. Все случаи контакта человека с инфразвуком можно поделить на две большие группы: контакты в пространстве, не ограниченном жесткими стенками, и контакты в помещениях, то есть в пространстве, ограниченном жесткими стенками. Таким образом, с точки зрения акустики, это контакты с бегущей волной (в первом случае) и контакты в полости резонатора (во втором случае).

Дополнение.

Звуки человеческого голоса по высоте делят на несколько диапазонов:

бас – 80–350 Гц,

баритон – 110–149 Гц,

тенор – 130–520 Гц,

дискант – 260–1000 Гц,

сопрано – 260–1050 Гц,

колоратурное сопрано – до 1400 Гц.

 

ЧАСТОТНЫЙ ДИАПАЗОН ЗВУКОВ, ВОСПРИНИМАЕМЫХ ЖИВОТНЫМИ

Бабочка 8 000 - 160 000 Гц

Дельфин 40 - 200 000 Гц

Кошка 5 - 100 000 Гц

Кузнечик 50 - 50 000 Гц

Летучая мышь 2 000 - 150 000 Гц

Медведь 300 - 70 000 Гц

Попугай 300 - 15 000 Гц

Собака 10 - 50 000 Гц

Человек 16 - 20 000 Гц

 

 

Тема 1. Радиоволны

 

Радиоизлучение (радиоволны, радиочастоты) — электромагнитное излучение с длинами волн 5·10−5—1010 метров и частотами, соответственно, от 6·1012 Гц и до нескольких Гц. Радиоволны используются при передаче данных в радиосетях.

О радиоволнах впервые в своих работах в 1868 году рассказал Джеймс Максвелл. Он предложил уравнение, которое описывает световые и радиоволны, как волны электромагнетизма. В 1887 году Генрих Герц экспериментально подтвердил теорию Максвелла, получив в своей лаборатории радиоволны длиной в несколько десятков сантиметров.

Радиочастоты — частоты или полосы частот в диапазоне 3 кГц — 3000 ГГц, которым присвоены условные наименования. Этот диапазон соответствует частоте переменного тока электрических сигналов для вырабатывания и обнаружения радиоволн. Так как большая часть диапазона лежит за границами волн, которые могут быть получены при механической вибрации, радиочастоты обычно относятся к электромагнитным.

Обозн-е МСЭ Длины волн Название волн Диапазон частот Название частот Энергия фотона, эВ, Применение
ELF 100 Мм — 10 Мм Декамегаметровые 3—30 Гц Крайне низкие (КНЧ) 12.4 фэВ — 124 фэВ Связь с подводными лодками, геофизические исследования
SLF 10 Мм — 1 Мм Мегаметровые 30—300 Гц Сверхнизкие (СНЧ) 124 фэВ — 1,24 пэВ Связь с подводными лодками, геофизические исследования
ULF 1000 км — 100 км Гектокилометровые 300—3000 Гц Инфранизкие (ИНЧ) 1,24 пэВ — 12,4 пэВ  
VLF 100 км — 10 км Мириаметровые 3—30 кГц Очень низкие (ОНЧ) 12,4 пэВ — 124 пэВ Связь с подводными лодками
LF 10 км — 1 км Километровые 30—300 кГц Низкие (НЧ) 124 пэВ — 1,24 нэВ Радиовещание, радиосвязь
MF 1000 м — 100 м Гектометровые 300—3000 кГц Средние (СЧ) 1,24 нэВ — 12,4 нэВ Радиовещание, радиосвязь
HF 100 м — 10 м Декаметровые 3—30 МГц Высокие (ВЧ) 12,4 нэВ — 124 нэВ Радиовещание, радиосвязь, рации
VHF 10 м — 1 м Метровые волны 30—300 МГц Очень высокие (ОВЧ) 124 нэВ — 1,24 мкэВ Телевидение, радиовещание, радиосвязь, рации
UHF 1000 мм — 100 мм Дециметровые 300—3000 МГц Ультравысокие (УВЧ) 1,24 мкэВ — 12,4 мкэВ Телевидение, радиосвязь, Мобильные телефоны, рации, микроволновые печи
SHF 100 мм — 10 мм Сантиметровые 3—30 ГГц Сверхвысокие (СВЧ) 12,4 мкэВ — 124 мкэВ Радиолокация, спутниковое телевидение, радиосвязь, Беспроводные компьютерные сети, спутниковая навигация
EHF 10 мм — 1 мм Миллиметровые 30—300 ГГц Крайне высокие (КВЧ) 124 мкэВ — 1,24 мэВ Радиоастрономия, высокоскоростнаярадиорелейная связь, метеорологическиерадиолокаторы, медицина
THF 1 мм — 0,1 мм Децимиллиметровые 300—3000 ГГц Гипервысокие частоты, длинноволновая областьинфракрасного излучения 1,24 мэВ — 12,4 мэВ Экспериментальная «терагерцовая камера», регистрирующая изображение в длинноволновом ИК (которое излучается теплокровными организмами, но, в отличие от более коротковолнового ИК, не задерживается диэлектрическими материалами). Также «применяется» для построения наукообразных гипотез про «прямое зрение», «телепатию» и


Поделиться:


Последнее изменение этой страницы: 2016-08-12; просмотров: 100; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.200.139 (0.019 с.)