Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Вивести рівняння лінійної середньоквадратичної регресії y на х(х на Y). Пояснити зміст позначень. Дати означення коефіцієнту регресії , залишкової дисперсії та пояснити, що вони характеризують.Содержание книги
Поиск на нашем сайте
Лінійна середньоквадратична регресія Y на Х має вигляд g(X)=my+ (X – mx), де mx=М(Х), my=М(Y), σx= , σy= , r=μxy/(σxσy) – коефіцієнт кореляції величин Х та Y. Виведення: Введем у розгляд функцію двох незалежних аргументів та : F(, )=M[Y - - X]2. (*) Враховуючи, що М(Х – mx)=M(Y – my)=0, M[(X - mx)*(Y - my)]= μxy=r σxσy та виконав викладки, отримаємо F(, )= + - 2r σxσy +(my - - mx)2 Дослідим функцію F(, ) на екстремум, для чого прирівняєм 0 часткові похідні: , σxσy=0 Звідси , mx Легко впевнитися, що при цих значеннях та розглянута функція приймає найменше значення. Звідси лінійна середньоквадратична регресія Y та X має вигляд g (X)= X= - mx+ X, або g(X)=my+ (X – mx), Коефіцієнт = наз. коефіцієнтом регресії Y на X Підставимо знайдені значення та у співвідношення (*), отримаємо мінімальне значення значення функції F(, ), яке дорівнює (1 – r2). Величину (1 – r2) наз. залишковою дисперсією в.в. Y відносно в.в. Х..Вона характеризує величину похибки, яку допускають при заміні Y лінійної функції g(X)= X. При r=+ -1 залишкова дисперсія =0 Аналогічно можно отримати пряму середньоквадратичної регресії Х на Y X - mx=r (Y- my), де r - коефіцієнт регресії Х на Y.Залишкова дисперсія (1-r2) величини Х відносно Y. Сформулювати теорему про корельованість складових нормально розподіленої двовимірної в.в. а) Мат. сподівання двохвимірної випадкової величини (X, Y) характеризує координати центру розподілу випадкової величини. Ці координати знаходять за формулами: Дисперсії DX та DY характеризують розсіювання випадкової точки (X, Y) вздовж координатних осей Ox та Oy, відповідно. Їх знаходять за формулами: б) Условным мат. ожиданием ДСВ Y при X=x (x – определенное возможное значение X) называют произведение возможных значений Y на их условные вероятности: M(Y|X=x)= Для непрерывных величин , где - условная плотность случайной величины Y при X=x. в) Для опису двохвимірної випадкової величини використовують також кореляційний момент (або коваріація): KXY=M((X-mX)(Y-mY))= . Корреляционным моментом μxy случайных величин X та Y называют мат. ожидание произведения отклонений этих величин. Для ДСВ: Корреляционный момент служит для характеристики связи между величинами X и Y. г) коефіцієнт кореляції є кількісна характеристика залежності випадкових величин X та Y і часто використовуються в статистиці. Коэффициенттом корреляции rxy случайных величин X и Y называют отношение корреляционного момента к произведению средних квадратических отклонений этих величин. Дати означення функції випадкової величи. Записати формулу для находження щільності імовірностей фун-ції неперервного випадкового аргумента. Навести приклади побудови розподілу фун-ції д.в.в. та щільності імовірностей фун-ції н.в.в. Н.В.В. Пусть х-действительное число. Вер-ть события, что Х примет значение, меньше х (Х <х), обозначим F(x)-фун-цией от х. Фун-цией распределения наз-ют фун-цию F(x), определяющую вероятность того, что случайная величина Х в результате испытания примет значение, меньше х, т.е. F(x)=P(X<x). Геометр.смысл: F(x)-вер-ть того, что случайная величина примет значение, которое изображается на числовой оси точкой, лежащей левее точки х. Законом распределения дискр.случ.вел.есть соответствие между возможными значениями и их вероятностями. Задается таблично, аналитически, графически. Пример распределения фун-ции Д.В.В: В лотерее 100 билетов. Разыгрывают 1выигрыш в 50руб. и 10 выигр. По 1 руб. Найти Закон.распр.случ.величины Х-стоимости выигрыша для владельца одного билета. Решение: X: x =50, x =1, x =0. p =0,01 =0,01 =1( =0,89. Закон распределения Х(50,10,0), р(0,01;0,1;0,89). Плотностью распределения вероятностей н.в.в. Х называют фун-цию f(x)-первую производную от фун-ции распределения F(x): f(x)= F’(x) Т.е. фун-ция распределения – первообразная для плотности распределения. Для описания распределения д.в.в. неприменима. Приклад: Дано: F(x)= 0, x<0 x2/81 0<x<=9 1 x>9 f(x)=F’(x) f(x)= 2x/81 x e (0;9] 0 x не належить (0;9] 2.25. Мат. сподівання ДВВ Х наз. число, яке = сумі добутків усіх можливих значень Х на відповідні їм імовірності. М(Х)= для ДВВ М(Х)= для НВВ Дисперсією ДВВ Х наз. число, яке = мат. сподіванню квадрата відхилення ДВВ Х від її мат. сподівання. D(X) = M((X- M(X)) ) для ДВВ D(X) =
|
||||
Последнее изменение этой страницы: 2016-08-12; просмотров: 184; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.139.235.100 (0.009 с.) |