Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Вычисление ошибок выборочного наблюдения для собственно-случайного и механического отбора.

Поиск

Основная задача выборочного наблюдения состоит в том, чтобы на основе характеристик выборочной совокупности (например, средней) получить достоверные суждения об аналогичных показателях (средней) в генеральной совокупности. При этом следует иметь в виду, что при статистических исследованиях возникают ошибки двух видов: регистрациии репрезентативности.
Ошибки регистрации могут иметь случайный и систематический (тенденциозный) характер. Случайные ошибки обычно уравновешивают друг друга, так как не имеют преимущественного направления в сторону увеличения или уменьшения значения изучаемого признака. Систематические ошибки направлены в одну сторону и возникают в связи с принятым способом отбора или нарушением его правил. Их можно избежать при правильной организации и проведении наблюдения.
Ошибки репрезентативности присущи только выборочному наблюдению и возникают в силу того, что выборочная совокупность не полностью воспроизводит генеральную. Они представляют собой расхождения между величинами выборочных и соответствующих генеральных показателей. Избежать ошибок репрезентативности нельзя, но, пользуясь методами теории вероятности, можно свести к минимальным значениям. Значение ошибки репрезентативности зависит от вида, метода и способа формирования выборочной совокупности.
По виду различают индивидуальный, групповой и комбинированный отбор. При индивидуальном отборе в выборку отбирают отдельные единицы генеральной совокупности, при групповом – качественно однородные группы или серии единиц. Комбинированный отбор – это сочетание 1-го и 2-го видов.
По методу отбора различают повторную и бесповторную выборку. При повторном отборе попавшая в выборку единица после регистрации возвращается в генеральную совокупность и участвует в дальнейшем отборе. Таким образом, объем генеральной совокупности не меняется. На практике такой метод отбора встречается редко.
При бесповторной выборке единица, попавшая в выборочную совокупность, в генеральную не возвращается, т.е. объем генеральной совокупности в процессе исследования сокращается.
Способ отбора определяет конкретный механизм или процедуру отбора единиц из генеральной совокупности. Наиболее распространены следующие выборки: собственно-случайная, механическая, типическая (или расслоенная, районированная), серийная, комбинированная.
По степени обхвата единиц совокупности различают большие и малые (n<30) выборки.

 

 

Ошибки выборки

Рассмотрим подробно перечисленные выше способы формирования выборочной совокупности и возникающие при этом ошибки репрезентативности.
Собственно-случайная выборка основывается на отборе единиц из генеральной совокупности наугад без каких-либо элементов системности. Технически собственно-случайный отбор проводят методом жеребьевки (например, розыгрыши лотерей) или по таблице случайных чисел.

Собственно-случайный отбор «в чистом виде» в практике выборочного наблюдения применяется редко, но он является исходным среди других видов отбора, в нем реализуются основные принципы выборочного наблюдения. Рассмотрим некоторые вопросы теории выборочного метода и формулы ошибок для простой случайной выборки.

Ошибка выборочного наблюдения – это разность между величиной параметра в генеральной совокупности, и его величиной, вычисленной по результатам выборочного наблюдения. Для средней количественного признака ошибка выборки определяется


Показатель называется предельной ошибкой выборки.
Выборочная средняя является случайной величиной, которая может принимать различные значения в зависимости от того, какие единицы попали в выборку. Следовательно, ошибки выборки также являются случайными величинами и могут принимать различные значения. Поэтому определяют среднюю из возможных ошибок – среднюю ошибку выборки , которая зависит от:

· объема выборки: чем больше численность, тем меньше величина средней ошибки;

· степени изменения изучаемого признака: чем меньше вариация признака, а, следовательно, и дисперсия, тем меньше средняя ошибка выборки.

При случайном повторном отборе средняя ошибка рассчитывается
.
Практически генеральная дисперсия точно не известна, но в теории вероятности доказано, что
.
Так как величина при достаточно больших n близка к 1, можно считать, что . Тогда средняя ошибка выборки может быть рассчитана:
.
Но в случаях малой выборки (при n<30) коэффициент необходимо учитывать, и среднюю ошибку малой выборки рассчитывать по формуле
.

При случайной бесповторной выборке приведенные формулы корректируются на величину . Тогда средняя ошибка бесповторной выборки:
и .
Т.к. всегда меньше , то множитель () всегда меньше 1. Это значит, что средняя ошибка при бесповторном отборе всегда меньше, чем при повторном.
Механическая выборка применяется, когда генеральная совокупность каким-либо способом упорядочена (например, списки избирателей по алфавиту, телефонные номера, номера домов, квартир). Отбор единиц осуществляется через определенный интервал, который равен обратному значению процента выборки. Так при 2% выборке отбирается каждая 50 единица =1/0,02, при 5% каждая 1/0,05=20 единица генеральной совокупности.

Начало отсчета выбирается разными способами: случайным образом, из середины интервала, со сменой начала отсчета. Главное при этом – избежать систематической ошибки. Например, при 5% выборке, если первой единицей выбрана 13-я, то следующие 33, 53, 73 и т.д.

По точности механический отбор близок к собственно-случайной выборке. Поэтому для определения средней ошибки механической выборки используют формулы собственно-случайного отбора.



Поделиться:


Последнее изменение этой страницы: 2016-08-12; просмотров: 383; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.40.216 (0.009 с.)