Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Опыт 5. Получение хромата барияСодержание книги
Поиск на нашем сайте
Внести в пробирку 2…3 капли раствора хлорида бария и 5…6 капель раствора ацетата натрия. Затем прибавить 4…6 капель раствора хромата калия. При этом выпадает жёлтый осадок хромата бария, не растворимый в уксусной кислоте. Составить уравнение реакции.
Опыт 6. Взаимодействие гидроксида магния с хлоридом аммония В две пробирки внести по 2…3 капли раствора хлорида магния. В одну пробирку добавить 5…6 кристаллов хлорида аммония и, встряхивая, добиться их растворения. Затем в каждую из пробирок добавить по 8…10 капель раствора гидроксида аммония. Объяснить, почему осадок выпадает в пробирке, в которой отсутствует хлорид аммония (см. пояснения к опыту 4).
Контрольные вопросы и упражнения
1. Дать определение ионообменных реакций. 2. Написать в ионной форме следующие уравнения реакций:
Pb(NO₃)₂ + CaJ₂ → CaCO₃ + HCl → FeCl₃ + Ba(OH)₂ → CH₃COOH + K₂CO₃ →
3. Как изменится растворимость осадка при добавлении одноимённого иона? 4. По ионным уравнениям составить уравнения в молекулярной форме (анион - NO₃⁻, катион Na⁺)
2 Ag⁺ + CrO₄²⁻ = Ag₂CrO₄; H⁺ + CH₃COO⁻ = CH₃COOH; 2 Al³⁺ + 3S²⁻ + 6 H₂O = 2 Al(OH)₃ + 3 H₂S.
Ионное произведение воды. Водородный показатель. Гидролиз солей Вода является слабым электролитом, который диссоциирует на ионы:
H₂O ⇄ H⁺ + OH⁻ или, точнее 2 H₂O ⇄ H₃O⁺ + OH⁻.
Концентрация образующихся гидратированных ионов водорода и гидроксид-ионов невелика. При 22°C она составляет 10⁻⁷ моль/л. Запишем выражение константы диссоциации воды
· (5)
Учитывая, что концентрация воды мало меняется при диссоциации, [H₂O] можно считать постоянной величиной и включить в константу:
KВ = Kд · [H₂O] = [H⁺] · [OH⁻]. (6)
Это произведение называется ионным произведением воды. При 22°C эта константа равна 1·10⁻¹⁴
KВ = [H⁺] · [OH⁻] = 1·10⁻¹⁴. (7)
Ионное произведение воды – постоянная величина как для чистой воды, так и водных растворов различных электролитов, и она часто используется в аналитических расчётах.
Пример. Вычислите концентрацию [OH⁻] в 0,01 М бромистоводородной кислоты, приняв степень ее диссоциации за 100 %. Решение. Уравнение диссоциации кислоты
HBr ⇄ H⁺ + Br⁻.
По формуле (3) рассчитываем концентрацию [OH⁻]
.
Водородный показатель. По кислотно-основным свойствам растворы обычно делят на кислые, нейтральные и щелочные. Это лишь качественная характеристика кислотности (основности) среды. Для количественной характеристики можно использовать молярную концентрацию ионов водорода. Удобно кислотность (основность) водных растворов выражать через десятичный логарифм концентрации ионов H+, взятый с обратным знаком. Эта величина называется водородным показателем, её обозначают символом pH:
pH = - lg[H⁺]. (8)
Если раствор нейтральный, т.е. [H⁺] = [OH-], то pH = 7. В кислом растворе [H⁺]>[OH⁻], следовательно, рН<7, в щелочном растворе [H⁺]<[OH⁻] и pH>7. Пример. Считая диссоциацию гидроксида калия в воде полной, вычислите рН 0,001 М раствора KOH. Решение.Определяем молекулярную концентрацию гидроксид-ионов в растворе [OH⁻] = [KOH] · α · N(OH⁻),
где α - степень диссоциации; N(OH⁻) – число ионов (OH⁻), образующихся при разложении одной молекулы KOH.
[OH⁻] = 0,001·1·1 моль/л = 10⁻³ моль/л.
Используя ионное произведение воды, находим концентрацию иона водорода , а затем водородный показатель
pH = -lg[H+] = -lg(1·10⁻¹¹) = 11.
Значение pH растворов можно экспериментально определить при помощи кислотно-основных индикаторов – веществ, которые изменяют окраску в зависимости от концентрации водородных ионов. Каждый индикатор характеризуется определёнными интервалами pH раствора, при которых он изменяет свой цвет. Изменение цвета лакмуса от красного до синего происходит при pH от 5 до 8, метилового оранжевого – от розового до жёлтого – при pH от 3,1 до 4,4, фенолфталеина – от бесцветного до малинового – при pH от 8,3 до 9,8. Эти интервалы значений pH называются областями перехода индикатора. Более точно pH раствора измеряется с помощью электрического прибора – pH-метра (потенциометра). Изменение характера среды раствора происходит не только в результате добавления к воде кислоты или щёлочи, но и при растворении некоторых солей (гидролиза солей). Гидролиз солей – химическое взаимодействие ионов солей с водой, во многих случаях сопровождающееся изменением реакционной среды (из нейтральной в кислую или щелочную). Причина гидролиза лежит в том, что ионы соли с ионами воды образуют малодиссоциирующие комплексы (ионы или молекулы). Реакции гидролиза всегда направлены в сторону образования таких комплексов. Если продукты гидролиза растворимы, то реакция имеет обратимый характер. Однако в результате гидролиза могут получаться летучие (газы) или малорастворимые вещества (осадки). В этом случае реакция становится необратимой. Рассмотрим важнейшие случаи гидролиза солей. 1. Соль образована сильным основанием и слабой кислотой. Например, такие соли, как Na₂CO3, K₂S, Na₃PO₄, KCN и др.
KCN + H₂O ⇄ KOH + HCN; CN⁻ + HOH ⇄ HCN + OH⁻.
Здесь KOH – сильное основание, хорошо диссоциирующее в воде, а HCN– слабая кислота, распадающаяся на ионы лишь в очень малой степени. Раствор приобретает щелочную реакцию вследствие наличия в нём свободных гидроксильных ионов, т.е. [OH⁻]>[H⁺] и pH>7. Таким образом, водные растворы всех солей, образованных сильным основанием и слабой кислотой, характеризуются щелочной реакцией среды. 2. Соль образована слабым основанием и сильной кислотой. Например, NH₄Cl, AlCl₃, CuSO₄ и др. В этом случае в процессе гидролиза главную роль играет катион соли. Анион же соли не связывает H⁺ ионов воды и практически в реакции гидролиза не участвует. Например NH₄Cl + HOH ⇄ NH₄ОН+ HCl или в ионном виде NH₄⁺ + HOH ⇄NH₄OH + H⁺.
NH₄OH – основание слабое, малодиссоциирующее; HCl – кислота сильная, распадается на ионы в высокой степени. Вследствие этого в растворе [H⁺]>[OH⁻] и pH<7; раствор приобретает кислую реакцию. 3. Соль образована слабым основанием и слабой кислотой NH₄CN, Al₂S₃, (CH₃COO)₃Fe, CuS и т.д. В этом случае в реакции гидролиза участвуют и катион (К+), и анион (А-) соли, они связывают ионы H+ и OH⁻ из молекулы воды:
КА + НОН ⇄ КОН + НА K⁺ + A⁻ + HOH ⇄ KOH + AH.
Среда раствора может стать кислой (если основание, образовавшееся в результате гидролиза, является более слабым, чем кислота, т.е. константы диссоциации основания и кислоты отвечают соотношению Кдис(КОН)<Кдис(АН)), либо щелочной (если основание окажется более сильным, чем кислота, т.е. Кдис(КОН)>Кдис(АН)), либо будет нейтральной в случае равной силы кислоты и основания: Кдис(КОН)≈Кдис(АН). Например, CH₃COONH₄ + HOH ⇄ CH₃COOH + NH₄OH.
Константы диссоциации уксусной кислоты (1,76 · 10⁻⁵) и гидроксида аммония (1,79 · 10⁻⁵) близки между собой. Поэтому pH раствора остаётся приблизительно равным 7. Соли, которые образованы слабым нерастворимым или летучим основанием и слабой летучей или нерастворимой кислотой подвергаются необратимому (полному) гидролизу. Такие соли не могут существовать в водных растворах. Например,
Al2S3 + 6 H2O ® 2 Al(OH)3¯ + 3 H2S; Fe2(CO3)3 + 6 H2O ® 2 Fe(OH)3¯ + 3 H2 CO3 (CO2 + H2O); (NH4)2SiO3 + 2 H2O ® 2 NH4OH (NH3 + H2O) + H2SiO3¯.
Полный гидролиз происходит также при совместном присутствии в водном растворе двух типов солей (соли, образованной слабым основанием и сильной кислотой, и соли, образованной сильным основанием и слабой кислотой). Например,
2 AlCl3 + 3 Na2 CO3 + 6 H2O ® 2 Al(OH)3¯ + 3 H2 CO3 (CO2 + H2O) + 6 NaCl.
4. Соли, образованные сильными основаниями и сильными кислотами, гидролизу не подвергаются, т.к. ионы не образуют слабых электролитов с водой. Примеры таких солей: NaCl, KNO₃, BaCl₂, Na₂SO₄. Реакция в растворах таких солей практически нейтральна (pH = 7). Соли, образованные многозарядным катионом или многозарядным анионом, гидролизуются ступенчато с образованием малодиссоциированных гидроксокатионов или гидроанионов. При комнатной температуре, как правило, гидролиз идёт по первой ступени. I. Гидролиз по многозарядному катиону Соль диссоциирует в растворе на ионы CuSO₄ = Cu²⁺ + SO₄²⁻.
Первая ступень гидролиза Cu²⁺ + H₂O ⇄ CuOH⁺ + H⁺, 2 CuSO₄ + 2 H₂O ⇄ (CuOH)₂SO₄ + H₂SO₄. Вторая ступень гидролиза CuOH⁺ + H₂O ⇄ Cu(OH)₂ + H⁺, (CuOH)₂ SO₄ + 2 H₂O ⇄ 2 Cu(OH)₂ + H₂SO₄.
II. Гидролиз по многозарядному аниону Соль диссоциирует в растворе на ионы Na₃PO₄ = 3Na⁺ + PO₄³⁻. Первая ступень гидролиза PO₄³⁻ + H₂O ⇄ HPO₄²⁻ + OH⁻, Na₃PO₄ + H₂O ⇄ Na₂HPO₄ + NaOH. Вторая ступень гидролиза HPO₄²⁻ + H₂O ⇄ H₂PO₄⁻ + OH⁻, Na₂HPO₄ + H₂O ⇄ NaH₂PO₄ + NaOH. Третья ступень гидролиза H₂PO₄⁻ + H₂O ⇄ H₃PO₄ + OH⁻, NaH₂PO₄ + H₂O ⇄ H₃PO₄ + NaOH.
Полнота гидролиза характеризуется степенью гидролиза, которая показывает отношение числа гидролизованных молекул к общему числу растворенных молекул.
Лабораторная работа Гидролиз солей Цель работы Изучение реакций гидролиза солей различных типов и смещения гидролитического равновесия.
Оборудование и реактивы Штатив с пробирками. Пробиркодержатель. Чашка Петри. Спиртовка. Растворы (0,001-1 М): щёлочи, соляной кислоты, хлорида магния, сульфата меди, хлорида натрия, ацетата натрия, хлорида алюминия. Индикаторы: метиловый оранжевый, фенолфталеин, универсальная индикаторная бумага.
|
||||
Последнее изменение этой страницы: 2016-08-10; просмотров: 397; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.226.98.244 (0.007 с.) |