Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Определение свопинга и виртуальной памяти. Достоинства и недостатки.↑ ⇐ ПредыдущаяСтр 3 из 3 Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
В отличие от памяти жёсткого диска, которую называют внешней памятью, оперативной памяти для сохранения требуется постоянное электропитание. Необходимым условием для того, чтобы программа могла выполняться, является ее нахождение в оперативной памяти. Только в этом случае процессор может извлекать команды из памяти и интерпретировать их. Объем оперативной памяти, который имеется в компьютере, существенно сказывается на характере протекания вычислительного процесса. Он ограничивает число одновременно выполняющихся программ и размеры их виртуальных адресных пространств. Подмена (виртуализация) оперативной памяти дисковой памятью позволяет повысить уровень мультипрограммирования - объем оперативной памяти компьютера теперь не столь жестко ограничивает количество одновременно выполняемых процессов, поскольку суммарный объем памяти, занимаемой образами этих процессов, может существенно превосходить имеющийся объем оперативной памяти. Понятно, однако, что работа такой «оперативной памяти» происходит значительно медленнее. Виртуализация оперативной памяти осуществляется совокупностью программных модулей ОС и аппаратных схем процессора и включает решение следующих задач: · размещение данных в запоминающих устройствах разного типа, например часть кодов программы - в оперативной памяти, а часть - на диске; · выбор образов процессов или их частей для перемещения из оперативной памяти на диск и обратно; · перемещение по мере необходимости данных между памятью и диском; · преобразование виртуальных адресов в физические. Виртуализация памяти может быть осуществлена на основе двух различных подходов: · свопинг (swapping) - образы процессов выгружаются на диск и возвращаются в оперативную память целиком; · виртуальная память (virtual memory) - между оперативной памятью и диском перемещаются части (сегменты, страницы и т. п.) образов процессов. Свопинг представляет собой частный случай виртуальной памяти и, следовательно, более простой в реализации способ совместного использования оперативной памяти и диска. Однако подкачке свойственна избыточность. А перемещение избыточной информации замедляет работу системы, и также приводит к неэффективному использованию памяти. Кроме того, системы, поддерживающие свопинг не способны загрузить для выполнения процесс, виртуальное адресное пространство которого превышает имеющуюся в наличии свободную память. Из-за указанных недостатков свопинг как основной механизм управления памятью почти не используется в современных OC. На смену ему пришел более совершенный механизм виртуальной памяти, который заключается в том, что при нехватке места в оперативной памяти на диск выгружаются только части образов процессов. Ключевой проблемой виртуальной памяти является преобразование виртуальных адресов в физические. Решение этой проблемы, зависит от того, какой способ структуризации виртуального адресного пространства принят в данной ОС. В настоящее время все множество реализаций виртуальной памяти может быть представлено тремя классами. Страничная виртуальная память организует перемещение данных между памятью и диском страницами - частями виртуального адресного пространства, фиксированного и сравнительно небольшого размера. Сегментная виртуальная память предусматривает перемещение данных сегментами - частями виртуального адресного пространства произвольного размера, полученными с учетом смыслового значения данных. Сегментная-страничная виртуальная память использует двухуровневое деление: виртуальное адресное пространство делится на сегменты, а затем сегменты делятся на страницы. Единицей перемещения данных здесь является страница. Для временного хранения сегментов и страниц на диске отводится либо специальная область, либо специальный страничный файл (page file, или paging file). Текущий размер страничного файла является важным параметром, оказывающим влияние на возможности операционной системы: чем больше страничный файл, тем больше приложений может одновременно выполнять ОС, однако увеличение числа одновременно работающих приложений за счет увеличения размера страничного файла замедляет их работу, так как значительная часть времени в этом случае тратится на перекачку кодов и данных из оперативной памяти на диск и обратно. Понятия конфиденциальности, целостности и доступности данных. Безопасная информационная система - это система, которая, во-первых, защищает данные от несанкционированного доступа, во-вторых, всегда готова предоставить их своим пользователям, а в-третьих, надежно хранит информацию и гарантирует неизменность данных. Таким образом, безопасная система по определению обладает свойствами конфиденциальности, доступности и целостности. · Конфиденциальность - гарантия того, что секретные данные будут доступны только тем пользователям, которым этот доступ разрешен (такие пользователи называются авторизованными); · Доступность - гарантия того, что авторизованные пользователи всегда получат доступ к данным; · Целостность - гарантия сохранности данных, которая обеспечивается запретом для неавторизованных пользователей каким-либо образом изменять, модифицировать, разрушать или создавать данные. Требования безопасности могут меняться в зависимости от назначения системы, характера используемых данных и типа возможных угроз. Например, если вы публикуете информацию в Интернете на Web-сервере и вашей целью является сделать её доступной для самого широкого круга людей, то конфиденциальность в данном случае не требуется. Однако требования целостности и доступности остаются актуальными. Не менее важным в данном примере является и обеспечение доступности данных. Т.к. существует вероятность того, что злоумышленник предпримет атаку, в результате которой помещенные на сервер данные станут недоступными для тех, кому они предназначались. Понятие конфиденциальности, доступности и целостности могут быть определенны не только по отношению к информации, но и к другим ресурсам вычислительной сети, например внешним устройствам или приложениям. Любое действие, которое направлено на нарушение конфиденциальности, целостности и/или доступности информации, а также на нелегальное использование других ресурсов сети, называется угрозой. Реализованная угроза называется атакой. Риск-это вероятностная оценка величины возможного ущерба, который может понести владелец информационного ресурса в результате успешно проведенной атаки. Значение риска тем выше, чем более уязвимой является существующая система безопасности, и чем выше вероятность реализации атаки.
Основы симметричного алгоритма шифрования. Пример. Любая процедура шифрования, превращающая информацию из обычного «понятного» вида в «нечитабельный» зашифрованный вид должна быть дополнена процедурой дешифрирования. Пара процедур - шифрование и дешифрирование - называется криптосистемой. Алгоритм шифрования считается раскрытым, если найдена процедура, позволяющая подобрать ключ за реальное время. Сложность алгоритма раскрытия является одной из важных характеристик криптосистемы и называется криптостойкостью. Существуют два класса криптосистем - симметричные и асимметричные. В симметричных схемах шифрования (классическая криптография) секретный ключ зашифровки совпадает с секретным ключом расшифровки. В асимметричных схемах шифрования (криптография с открытым ключом) открытый ключ зашифровки не совпадает с секретным ключом расшифровки. Теоретические основы симметричного алгоритма шифрования впервые были изложены в 1949 году в работе Клода Шеннона. В данной модели три участника: отправитель, получатель, злоумышленник. Задача отправителя заключается в том, чтобы по открытому каналу передать некоторое сообщение в защищенном виде. Для этого он на ключе k зашифровывает открытый текст Х и передает шифрованный текст У. Задача получателя заключается в том, чтобы расшифровать Y и прочитать сообщение Х. Предполагается, что отправитель имеет свой источник ключа. Сгенерированный ключ заранее по надежному каналу передается получателю. Задача злоумышленника заключается в перехвате и чтении передаваемых сообщений, а также в имитации ложных сообщений. Модель симметричного шифрования Модель является универсальной - если зашифрованные данные хранятся в компьютере и никуда не передаются, отправитель и получатель совмещаются в одном лице, а в роли злоумышленника выступает некто, имеющий доступ к компьютеру в ваше отсутствие. Наиболее популярным стандартом симметричным алгоритмом шифрования данных является DES (Data Enctyption Standart). Суть этого алгоритма заключается в следующем: Данные шифруются поблочно. Перед шифрованием любая форма представления данных преобразуется в числовую. Эти числа получают путем любой открытой процедуры преобразования блока текста в число. На вход шифрующей функции поступает блок данных размером 64 бита, он делится пополам на левую (L) и правую (R) части. На первом этапе на место левой части результирующего блока помещается правая часть исходного блока. Правая часть результирующего блока вычисляется как сумма по модулю 2 (операция XOR) левой, и правой частей исходного блока. Затем на основе случайной двоичной последовательности по определенной схеме в полученном результате выполняются побитные замены и перестановки. Используемая двоичная последовательность, представляющая собой ключ данного алгоритма, имеет длину 64 бита, из которых 56 действительно случайны, а 8 предназначены для контроля ключа. Алгоритм DES широко используется в различных технологиях и продуктах безопасности информационных систем. Для того чтобы повысить криптостойкость алгоритмы DES, иногда применяют его усиленный вариант, называемый «тройным DES», который включает троекратное шифрование с использованием двух разных ключей. При этом длина ключа увеличивается с 56 бит до 112 бит, а значит, криптостойкость алгоритма существенно повышается. Но за это приходится платить производительностью – «тройной DES» требует в три раза больше времени, чем «обычный» DES. В симметричных алгоритмах главную проблему представляют ключи. Во-первых, криптостойкость многих симметричных алгоритмов зависит от качества ключей, это предъявляет повышенные требования к службе генерации ключей. Во-вторых, принципиальной является надежность канала передачи ключа. Основы несимметричного шифрования. Пример. Любая процедура шифрования, превращающая информацию из обычного «понятного» вида в «нечитабельный» зашифрованный вид должна быть дополнена процедурой дешифрирования. Пара процедур - шифрование и дешифрирование - называется криптосистемой. Алгоритм шифрования считается раскрытым, если найдена процедура, позволяющая подобрать ключ за реальное время. Сложность алгоритма раскрытия является одной из важных характеристик криптосистемы и называется криптостойкостью. Существуют два класса криптосистем - симметричные и асимметричные. В симметричных схемах шифрования (классическая криптография) секретный ключ зашифровки совпадает с секретным ключом расшифровки. В асимметричных схемах шифрования (криптография с открытым ключом) открытый ключ зашифровки не совпадает с секретным ключом расшифровки. В середине 70-х двое ученых - Винфилд Диффи и Мартин Хеллман - описали принципы шифрования с открытыми ключами. Особенность шифрования на основе открытых ключей состоит в том, что одновременно генерируется уникальная пара ключей, таких, что текст, зашифрованный одним ключом, может быть расшифрован только с использованием второго ключа и наоборот. В модели криптосхемы с открытым ключом также три участника: отправитель, получатель, злоумышленник. Задача отправителя заключается в том, чтобы по открытому каналу связи передать некоторое сообщение в защищенном виде. Получатель генерирует на своей стороне два ключа: открытый Е и закрытый D. Закрытый ключ D (часто называемый также личным ключом) абонент должен сохранять в защищенном месте, а открытый ключ Е он может передать всем, с кем он хочет поддерживать защищенные отношения. Открытый ключ используется для шифрования текста, но расшифровать текст можно только с помощью закрытого ключа. Поэтому открытый ключ передается отправителю в незащищенном виде. Отправитель, используя открытый ключ получателя, шифрует сообщение Х и передает его получателю. Получатель расшифровывает сообщение своим закрытым ключом D. Очевидно, что числа, одно из которых используется для шифрования текста, а другое - для дешифрирования, не могут быть независимыми друг от друга, а значит, есть теоретическая возможность вычисления закрытого ключа по открытому, но это связано с огромным количеством вычислений, которые требуют соответственно огромного времени. Если же нужна взаимная аутентификация и двунаправленный секретный обмен сообщениями, то каждая из общающихся сторон генерирует собственную пару ключей и посылает открытый ключ своему корреспонденту. Хотя информация об открытом ключе не является секретной, ее нужно защищать от подлогов, чтобы злоумышленник под именем легального пользователя не навязал свой открытый ключ, после чего с помощью своего закрытого ключа он может расшифровать все сообщения, посылаемые легальному пользователю. В 1978 году трое ученых разработали систему шифрования с открытыми ключами RSA. полностью отвечающую всем принципам Диффи-Хеллмана. Этот метод состоит в следующем: 1) Случайно выбираются два очень больших простых числа р и q. 2) Вычисляются два произведения n=р*q и m=(p-l)*(q-l). 3) Выбирается случайное целое число Е, не имеющее общих сомножителей с m. 4) Находится D, такое, что DE= 1 по модулю m. 5) Исходный текст, Х, разбивается на блоки таким образом, чтобы О<Х <n. 6) Для шифрования сообщения необходимо вычислить C= X^e по модулю n. 7) Для дешифрирования вычисляется x=с^d по модулю n. Таким образом, чтобы зашифровать сообщение, необходимо знать пару чисел (Е, n), а чтобы дешифрировать - пару чисел (D, n). Первая пара - это открытый ключ, а вторая - закрытый. Зная открытый ключ (Е, n), можно вычислить значение закрытого ключа D. Необходимым промежуточным действием в этом преобразовании является нахождение чисел р и q, для чего нужно разложить на простые множители очень большое число n, а на это требуется очень много времени. Вследствие сложности реализации операций модульной арифметики криптоалгоритм RSA Часто используют только для шифрования небольших объемов информации, например для рассылки классических секретных ключей или в алгоритмах цифровой подписи, а основную часть пересылаемой информации шифруют с помощью симметричных алгоритмов.
|
|||||||
Последнее изменение этой страницы: 2016-08-01; просмотров: 1164; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.226.187.60 (0.009 с.) |