Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Перспективные направления исследований в области архитектуры ВССодержание книги
Поиск на нашем сайте
Основные направления исследований в области архитектуры ВМ и ВС можно условно разделить на две группы: эволюционные и революционные. К первой группе следует отнести исследования, целью которых является совершенствование методов реализации уже достаточно известных идей. Изыскания, условно названные революционными, направлены на создание совершенно новых архитектур, принципиально отличных от уже ставшей традиционной фон-неймановской архитектуры. Большинство из исследований, относимых к эволюционным, связано с совершенствованием архитектуры микропроцессоров (МП). В принципе кардинально новых архитектурных подходов в микропроцессорах сравнительно мало. Основные идеи, лежащие в основе современных МП, были выдвинуты много лет тому назад, но из-за несовершенства технологии и высокой стоимости реализации нашли применение только в больших универсальных ВМ (мэйнфреймах) и суперЭВМ. Наиболее значимые из изменений в архитектуре МП связаны с повышением уровня параллелизма на уровне команд (возможности одновременного выполнения нескольких команд). Здесь в первую очередь следует упомянуть конвейеризацию, суперскалярную обработку и архитектуру с командными словами сверхбольшой длины (VLIW). После успешного переноса на МП глобальных архитектурных подходов «больших» систем основные усилия исследователей теперь направлены на частные архитектурные изменения. Примерами таких эволюционных архитектурных изменений могут служить: усовершенствованные методы предсказания переходов в конвейере команд, повышение частоты успешных обращений к кэшпамяти за счет усложненных способов буферизации и т. п. Наблюдаемые нами достижения в области вычислительных средств широкого применения пока обусловлены именно «эволюционными» исследованиями. Однако уже сейчас очевидно, что, оставаясь в рамках традиционных архитектур, мы довольно скоро натолкнемся на технологические ограничения. Один из путей преодоления технологического барьера лежит в области нетрадиционных подходов. Исследования, проводимые в этом направлении, по нашей классификации отнесены к «революционным». Справедливость такого утверждения подтверждается первыми образцами ВС с нетрадиционной архитектурой. Оценивая перспективы эволюционного и революционного развития вычислительной техники, можно утверждать, что на ближайшее время наибольшего прогресса можно ожидать на пути использования идей параллелизма на всех его уровнях и создания эффективной иерархии запоминающих устройств.
2. Иерархия запоминающих устройств. Расслоение памяти. Расслоение памяти Помимо податливости к наращиванию емкости, блочное построение памяти облает еще одним достоинством — позволяет сократить время доступа к информации. Это возможно благодаря потенциальному параллелизму, присущему блочной организации. Большей скорости доступа можно достичь за счет одновременного Доступа ко многим банкам памяти. Одна из используемых для этого методик называется расслоением памяти. В ее основе лежит так называемое чередование адресов (address interleaving), заключающееся в изменении системы распределения адресов между банками памяти. Прием чередования адресов базируется на ранее рассмотренном свойстве локальности по обращению, согласно которому последовательный доступ в память обычно производится к ячейкам, имеющим смежные адреса. Иными словами, если в данный момент выполняется обращение к ячейке с адресом 5, то следующее обращение, вероятнее всего, будет к ячейке с адресом 6, затем 7 и т. д. Чередование адресов обеспечивается за счет циклического разбиения адреса. В нашем примере (рис.43) для выбора банка используются два младших разряда адреса (А1, А0), а для выбора ячейки в банке — 7 старших разрядов (As-A2).
1. Архитектура системы команд. Классификация архитектур системы команд. Архитектура системы команд
Системой команд вычислительной машины называют полный перечень команд, которые способна выполнять данная ВМ. В свою очередь, под архитектурой системы команд (АСК) принято определять те средства вычислительной машины, которые видны и доступны программисту. АСК можно рассматривать как линию согласования нужд разработчиков программного обеспечения с возможностями создателей аппаратуры вычислительной машины (рис. 20).
Рис.20. Архитектура системы команд как интерфейс между программным и аппаратным обеспечением
В конечном итоге, цель тех и других - реализация вычислений наиболее эффективным образом, то есть за минимальное время, и здесь важнейшую роль играет правильный выбор архитектуры системы команд. В упрощенной трактовке время выполнения программы (Твыч) можно определить через число команд в программе (Nком),среднее количество тактов процессора, приходящихся на одну команду (CPI),и длительность тактового периода пр: Tвыч=Nком CPI np.
Каждая из составляющих выражения зависит от одних аспектов архитектуры системы команд и, в свою очередь, влияет на другие (рис. 21), что свидетельствует о необходимости чрезвычайно ответственного подхода к выбору АСК.
Рис.21. Взаимосвязь между системой команд и факторами, определяющими эффективность вычислений
Общая характеристика архитектуры системы команд вычислительной машины определяется следующими факторами: 1. Какого вида данные будут представлены в вычислительной машине и в какой форме? 2. Где эти данные могут храниться помимо основной памяти? 3. Каким образом будет осуществляться доступ к данным? 4. Какие операции могут быть выполнены над данными? 5. Сколько операндов может присутствовать в команде? 6. Как будет определяться адрес очередной команды? 7. Каким образом будут закодированы команды? Рассмотрим наиболее распространенные архитектуры системы команд, как в описательном плане, так и с позиций эффективности. Далее приводятся доступные статистические данные, позволяющие дополнить качественный анализ различных АСК количественными показателями. Большинство представленных статистических данных почерпнуто из общепризнанного источника — публикаций Д. Хеннеси и Д. Паттерсона приведенных в [2]. Данные были получены в результате реализации на вычислительной машине DEC VAX трех программных продуктов: компилятора с языка С GCC, текстового редактора ТеХ и системы автоматизированного проектирования Spice. Считается, что GCC и ТеХ показательны для программных приложений, где превалируют целочисленные вычисления и обработка текстов, a Spice может рассматриваться как типичный представитель вычислений с вещественными числами. С учетом того, что архитектура вычислительной машины VAX в известном смысле уже устарела, Хеннеси и Паттерсоном, а также приверженцами их методики были проведены дополнительные исследования, где программы GCC, Spice и ТеХ выполнялись на более современной ВМ, в частности MIPS R2000. Доступные данные для этого варианта также приводятся.
|
||||
Последнее изменение этой страницы: 2016-08-01; просмотров: 961; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.141.201.106 (0.005 с.) |