Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Особенности передачи сигналов по шинам

Поиск

 

Рассматривая процесс распространения сигнала по сигнальной линии, необходимо учитывать четыре основных фактора:

· скорость распространения;

· отражение;

· перекос;

· эффекты перекрестного влияния.

Теоретическая граница скорости распространения сигнала — скорость света в свободном пространстве, то есть около 300 мм/нс. Реальная скорость, определяемая физическими характеристиками сигнальных линий и нагрузкой, реально не может превысить 70% от скорости света.

Процессы в линии рассмотрим на примере сигнальной линии, которая через Резистор, соединенный с источником питания, удерживается на уровне напряжения, соответствующем логической единице. Сигнал драйвера «подтягивает» линию к своему уровню напряжения. Изменение напряжения распространяется от точки подключения драйвера в обоих направлениях, пока на всей линии не установится уровень сигнала драйвера. Характер распространения сигнала определяют емкость, индуктивность и характеристическое сопротивление линии, локальные значения которых по длине линии зависят от локальных свойств проводника и его окружения.

По мере распространения по реальной линии сигнал преодолевает области с различным сопротивлением. Там, где оно меняется, сигнал не может оставаться постоянным, поскольку меняется соотношение между током и напряжением. Часть сигнала продолжает продвижение, а часть — отражается в противоположную сторону. Прямой и отраженный сигналы могут повторно отражаться, в результате чего на линии формируется сложный результирующий сигнал. В конце линии сигнал отражается назад, если только он не поглощен правильно подобранным согласующим резистором. Если на конце линии имеется согласующий резистор, с сопротивлением, идентичным импедансу линии, сигнал будет поглощен без отражения. Такие резисторы должны размещаться по обоим концам сигнальной линии. К сожалению, точное значение импеданса реальной линии никогда не известно, из-за чего номиналы резисторов невозможно точно согласовать с линией, и отражение» всегда имеет место.

При параллельной передаче по линиям шины битов адреса или данных сигналы на разных линиях достигают соответствующих приемников совсем не одновременно. Это явление известно как перекос сигналов. Причины возникновения и способы компенсации перекоса будут рассмотрены позже.

Распространяясь по линии, сигнал создает вокруг нее электростатическое и магнитное поля. Сигнальные линии в шине располагаются параллельно и в непосредственной близости одна от другой. Поля от близко расположенных линий перекрываются, приводя к тому, что сигнал на одной линии влияет на сигнал в другой. Этот эффект называют перекрестной или переходной помехой.

Наиболее очевидный способ уменьшения перекрестной помехи эффекта — пространственно разнести линии шины так, чтобы их поля не влияли на «соседей», — для печатной платы ограниченного размера не подходит. К снижению эффектов перекрестного влияния ведет уменьшение взаимных емкости и индуктивности линий, чего можно добиться, разместив вблизи сигнальных линий «земляные» линии или включив в многослойную печатную плату «земляные» слои. Это, однако, приводит к нежелательному эффекту увеличения собственной емкости линий. Наиболее распространенный подход к снижению перекрестной помехи состоит в разделении линий изолятором с малой диэлектрической постоянной. В целом, при проектировании шин обычно используется комбинация перечисленных методов борьбы с перекрестной помехой.

Из-за несовершенства физической реализации сигнальных линий фронты импульсов по мере распространения сигналов меняются, соответственно, меняется и форма сигнала. Для каждой шины существует некое минимальное значение ширины импульса, при которой он еще способен дойти от одного конца к другому так, что его еще можно распознать. Эта ширина выступает в качестве основного ограничения на полосу пропускания данной шины, то есть на число импульсов, которые могут быть переданы по шине в единицу времени.

Поскольку драйвер одновременно «видит» две линии, передающие информацию в противоположных направлениях, он должен поддерживать двойную по сравнению с одной линией величину тока. Для типичных линий импеданс не превышает 20 Ом, а сигналы имеют уровень порядка 3 В, что выражается в величине тока около 150 мА. Приведенные цифры для современных драйверов не составляют проблемы, поскольку применяемые в настоящее время схемы способны приспособиться к гораздо худшим параметрам сигналов.

Порождаемый сигналом ток замыкается через «земляной» контакт драйвера. Когда одновременно активны все сигнальные линии, ток возврата через «землю» может быть весьма большим. Положение осложняет то, что ток этот не является постоянным и в моменты подключения и отключения драйвера содержит высокочастотные составляющие. Кроме того, из-за сопротивления и индуктивности «земляного» слоя печатной платы потенциалы на «земляных» выводах дочерних плат могут различаться. Это может приводить к неверной оценке сигналов приемниками, следствием чего становится некорректное срабатывание логических схем. С «земляным» шумом легче бороться на стадии проектирования шины. Прежде всего необходимо улучшать характеристики «земляных» слоев на материнской и дочерних платах. Между системами заземления материнской и дочерних плат должно быть много хорошо распределенных надежных контактов. Для высокоскоростных шин на каждые четыре сигнальных шины следует иметь отдельный «земляной» контакт. Кроме того, дочерняя плата должна быть спроектирована так, чтобы «земляной» ток от данного драйвера протекал к тому «земляному» контакту, который расположен как можно ближе к сигнальным выводам. «Земля» материнской платы обычно реализуется в виде внутреннего медного слоя в многослойной печатной плате; отверстия с зазором вокруг сигнальных выводов предотвращают короткое замыкание сигнального вывода с этим слоем. Разъем должен быть достаточно широким, чтобы на дочерней плате трансиверы можно было разместить по возможности ближе к нему, что позволяет сократить длину тех участков шины, где нарушается ее неразрывность.

В целом ряде известных шин многие из рассмотренных положений игнорируются. По практическим соображениям используются линии с высоким импедансом. Надежность работы с такими «плохими» шинами достигается за счет их замедления: затягивание перехода сигналов от одного уровня напряжения к другому приводит к уменьшению отражений. Снижается также влияние перекрестных помех.

Высокое быстродействие драйверов шины имеет и отрицательную сторону; они оказываются слишком быстрыми для управляемых ими шин, при этом сигналы на линиях сильно искажаются. Эта проблема обычно преодолевается за счет введения задержки, часто называемой временем установления сигнала (временем успокоения). Задержка выбирается так, что сигналы стабилизируются до момента их использования. Зачастую достаточно задержки, принципиально присущей исполь-3Уемьш схемам, но иногда приходится вводить и явную задержку.

В синхронных шинах, где для синхронизации транзакций используется единая система тактовых импульсов (ТИ), такая задержка может быть добавлена весьма просто путем замедления тактирования. Так, можно разрешить всем сигналам изменяться только по одному из фронтов ТИ, что создает достаточную заминку для распространения сигналов и их стабилизации.

В асинхронных шинах проблема должна быть решена либо в самом драйвере, либо за счет введения искусственной приостановки, компенсирующей излишнее быстродействие драйвера. Еще одна возможность — замедление цепей приемника.

Чтобы сделать приемники нечувствительными к отражениям и высокочастотному шуму, в них встраивают фильтры нижних частот. В шине NITS Altair, например, используются драйверы большой мощности и маломощные приемники. По причине быстрых драйверов и неудачного дизайна монтажной шины сигналы в этой шине сильно искажаются, но маломощные приемники достаточно медлительны и позволяют нивелировать большинство из дефектов сигнала.

Применяющиеся в настоящее время драйверы и приемники на базе транзисторно-транзисторной логики (ТТЛ) уже не в полной мере отвечают растущим требованиям. В новых шинах наметилась тенденция перехода к трансиверам на основе эмиттерно-связанной логики (ЭСЛ), как, например, в шине Fastbus. Замечательно, что одновременно с уменьшением емкости линий, уровней и крутизны фронтов сигналов, подавлением шумов в приемнике, в подобных трансиверах сохраняется преемственность со старыми устройствами: они допускают использование со стороны дочерних плат источников питания и сигналов, характерных для ТТЛ-технологии.

Обычно перед установкой или извлечением дочерней платы требуется отключение источника питания машины. В мультипроцессорных системах это крайне нежелательно, поскольку временное отключение питания приводит к необходимости перезагрузки и перезапуска каждого процессора. Некоторые системы проектируются так, что допускают извлечение и установку платы в присутствии питающего напряжения. В них обеспечивается сохранение состояния остальных плат, но работа шины временно приостанавливается. Естественно, что плата, которая была удалена и заменена на другую, уже не находится в исходном состоянии и должна быть инициализирована. Чаще всего реализация подобного режима оказывается чересчур дорогостоящей.

 

1. Типы структур вычислительных машин и систем. Структуры вычислительных машин



Поделиться:


Последнее изменение этой страницы: 2016-08-01; просмотров: 215; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.233.69 (0.008 с.)