Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Состояния. Закон возрастания энтропии.

Поиск

А)

Обратимым процессом называют такой процесс, который может быть проведен в обратном направлении таким образом, что система будет проходить через те же состояния, что и при прямом ходе, но в обратной последовательности. Обратимым может быть только равновесный процесс.

Обратимый процесс обладает следующими свойствами: если при прямом ходе на каком-то элементарном участке (рис. 9.8.) система получает тепло и совершает работу , то при обратном ходе на том же участке система отдает тепло и над ней совершается работа . По этой причине после протекания обратимого процесса в одном, а затем в обратном направлении и возвращение системы в первоначальное состояние в окружающих телах не должно оставаться никаких изменений. Например шарик на пружине в вакууме колеблется бесконечно долго.

В том случае, когда после завершения прямого и обратного процессов система вернулась в первоначальное состояние и в окружающей среде остались изменения, процесс является необратимым. Очевидно, что все процессы в природе необратимые.

Энтропия.

Энтропи́я — мера беспорядка системы, состоящей из многих элементов.

Рассмотрим обратимый круговой термодинамический процесс, представленный на рис. 3.12. Для этого процесса может быть записано равенство Клаузиуса в виде

 

, (3.50)

где первый интеграл берется по траектории , а второй - соответственно по траектории .

Рис. 3.12. Обратимый круговой термодинамический процесс

Изменение направления протекания процесса на противоположное , что можно выполнить вследствие обратимости процесса , приводит к замене знака перед вторым интегралом формулы (3.50). Выполнение этой замены и перенос второго интеграла в выражении (3.50) в правую часть дают

 

. (3.51)

Из полученного выражения следует, что для обратимых процессов интеграл не зависит от конкретного вида траектории, по которой происходит процесс, а определяется только начальным и конечным равновесными состояниями термодинамической системы.

С аналогичной ситуацией мы уже встречались, когда в механике рассматривали определение работы консервативной силы. Независимость работы консервативной силы от формы траектории движения тела позволила ввести функцию, названную потенциальной энергией, которая зависит только от состояния механической системы и не зависит от того, как в это состояние система была переведена.

Из этой аналогии следует, что элементарное приведенное количество теплоты должно представлять собой полный дифференциал некоторой функции , зависящей только от состояния термодинамической системы, то есть:

 

. где — приращение энтропии; — минимальная теплота, подведённая к системе; T — абсолютная температура процесса. (3.52)

Тогда интеграл будет равен разности значений функции в равновесных состояниях 1 и 2:

 

. (3.53)

Итак, величина является функцией, зависящей только от равновесного состояния термодинамической системы. Она не зависит от конкретного вида термодинамического процесса, приведшего систему в указанное состояние. Выражения (3.52) и (3.53) дают математическую формулировку сформулированного выше определения термодинамической энтропии.

Из выражения (3.53) следует, что термодинамическая энтропия, так же как и потенциальная энергия, определяется с точностью до произвольной постоянной. Это связано с тем, что формула (3.53) не позволяет определить абсолютное значение термодинамической энтропии, а дает только разность энтропий для двух равновесных состояний, как суммарную приведенную теплоту в обратимом термодинамическом процессе, переводящим систему из одного состояния в другое.

Термодинамическая энтропия, введенная выше, применима для описания равновесного состояния термодинамической системы. Для нахождения энтропии термодинамической системы, находящейся в квазиравновесном состоянии, при котором можно считать, что её отдельные части (подсистемы) находятся в состоянии равновесия, можно воспользоваться свойством аддитивности энтропии:

 

, (3.54)

где: - энтропии подсистем, - число подсистем.

Следовательно, термодинамическая энтропия макроскопической системы, состоящей из находящихся в равновесии подсистем, равна сумме энтропий этих подсистем.

Свойство аддитивности энтропии позволяет описывать состояния макроскопической системы, не находящейся в равновесии, путем её разбиения на достаточно большое число подсистем, которые можно считать находящимися в состоянии локального равновесия.



Поделиться:


Последнее изменение этой страницы: 2016-07-16; просмотров: 643; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.58.105.80 (0.005 с.)