Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Эксплуатация нефтяных и нагнетательных скважин

Поиск

 

СШНУ — комплекс оборудования для механизированной добычи жидкости через скважины с помощью штангового насоса, приводимого в действие станком-качалкой.

 

Рисунок 4- СШНУ: 1 - станок-качалка; 2 - полированный шток; 3 - колонна штанг; 4 - обсадная колонна; 5 - насосно-компрессорные трубы; 6 - цилиндр насоса; 7 - плунжер насоса; 8 - нагнетательный клапан; 9 - всасывающий клапан.

Штанговый насос (рис.4) опускается в скважину ниже уровня жидкости. Состоит из цилиндра, плунжера, соединённого со штангой, всасывающих и нагнетательных клапанов. Цилиндр невставного штангового насоса опускается на колонне насосно-компрессорных труб, а плунжер — на колонне штанг внутри насосно-компрессорных труб; цилиндр вставного штангового насоса опускается вместе с плунжером на штангах и закрепляется на замковой опоре, установленной на конце насосно-компрессорных труб или на пакере; штанговый насос большого диаметра опускается целиком на колонне насосно-компрессорных труб и соединяется с колонной штанг через сцепное устройство. Существуют также: штанговые насосы с подвижным цилиндром и неподвижным плунжером, с двумя ступенями сжатия, с двумя цилиндрами и плунжерами, с камерой разрежения и др. Штанги соединяются в колонну с помощью муфт. Длина штанги 8-10 м, диаметр 12,7-28,6 мм. Используются также полые неметаллические штанги или непрерывные колонны штанг, наматываемые при подъёме на барабан. Длина колонны до 2500 м. При длине свыше 1000 м колонна штанг делается ступенчатой, с увеличивающимся кверху диаметром для уменьшения массы и достижения равнопрочности.

Станок-качалка преобразует вращение вала двигателя в возвратно-поступательное движение, передаваемое колонне штанг через гибкую подвеску и полированный шток. Применяются в основном механические редукторно-кривошипные, балансирные и безбалансирные, а также башенные и гидравлические станки-качалки. Максимальная длина хода точки подвеса штанг 1-6 м, максимальная нагрузка 1-20 тс, частота ходов в минуту от 5 до 15. Используют электрический, реже газовые двигатели (на нефтяном газе от скважины) мощностью до 100 кВт. Станок-качалка преобразует вращение вала двигателя в возвратно-поступательное движение, передаваемое колонне штанг через гибкую (канатную, цепную) подвеску и полированный шток. Применяются в основном механические редукторно-кривошипные, балансирные и безбалансирные, а также башенные и гидравлические станки-качалки. Максимальная длина хода точки подвеса штанг 1-6 м (башенные до 12 м), максимальная нагрузка 1-20 тс, частота ходов в минуту от 5 до 15. Используют электрический, реже газовые двигатели мощностью до 100 кВт.

Станция управления штанговой насосной установкой обеспечивает пуск, установку, защиту от перегрузок, а также периодическую работу. Дополнительное оборудование штанговой насосной установки: якорь для предотвращения перемещений нижнего конца насосно-компрессорных труб; хвостовик — колонна насосно-компрессорных труб малого диаметра (25-40 мм) ниже насоса для выноса воды; газовые и песочные якори для защиты насоса от попадания свободного газа и абразивных механических примесей; штанговые протекторы (полимерные или с катками) для уменьшения износа труб и штанговых муфт в наклонных скважинах; скребки на штангах для удаления парафиновых отложений с насосно-компрессорных труб; динамограф, показывающий зависимость нагрузки от перемещения точки подвеса штанг, для технической диагностики узлов штанговой насосной установки.

Продукция скважины (нефть, вода, рассол) подаётся на поверхность по насосно-компрессорным трубам, обсадной колонне либо по полым штангам. Производительность при постоянной откачке до 300 м3/сутки, при меньших дебитах применяется периодическая добыча нефти.

Электроцентробежная насосная установка — комплекс оборудования для механизированной добычи жидкости через скважины с помощью центробежного насоса, непосредственно соединённого с погружным электродвигателем. Используют при добыче нефти и воды, в том числе рассолов. Электроцентробежная насосная установка для нефтяных скважин (рис. 5) включает центробежный насос с 50-600 ступенями; асинхронный электродвигатель, заполненный специальным диэлектрическим маслом; протектор, предохраняющий полость электродвигателя от попадания пластовой среды; кабельную линию, соединяющую электродвигатель с трансформатором и станцией управления. Ступень центробежного насоса содержит направляющий аппарат с рабочим колесом (рис. 6).

 

Рисунок 5 – Электроцентробежная насосная установка:
1 - электродвигатель; 2 - протектор; 3 - центробежный насос; 4 - кабель; 5 - устьевая арматура; 6 - трансформатор; 7 - станция управления
; 8 - датчик.

 

Направляющие аппараты стянуты в цилиндрическом корпусе насоса, а рабочие колёса зафиксированы шпонкой на валу, подвешенном на осевой опоре и вращающемся в концевых и промежуточных радиальных опорах. Детали отливаются из специального чугуна, бронзы, коррозионно- и абразивостойких сплавов и полимерных материалов. Для уменьшения попадания в насос свободного газа перед ним устанавливается гравитационный или центробежный газосепаратор.

 

Рисунок 6 - Ступень электроцентробежного насоса: 1 - направляющий аппарат; 2 - рабочее колесо.

 

Электродвигатель состоит из статора, содержащего цилиндрический корпус, с запрессованными пакетами электротехнической стали, в пазах которых размещена обмотка, и подвешенного на осевой опоре ротора с закреплёнными на валу стальными пакетами, где размещена короткозамкнутая обмотка типа "беличье колесо"; между пакетами расположены радиальные опоры.

Протектор содержит уплотнение вала систему компенсации температурного расширения масла, в некоторых случаях гидравлический затвор с жидкостью большей плотности, чем скважинная среда и нейтральной по отношению к ней и маслу электродвигателя.

Трехжильный бронированный плоский или круглый кабель большого сечения имеет герметичный ввод в электродвигатель и соединяет последний через трансформатор со станцией управления. Станция осуществляет управление, контроль и электрический защиту электроцентробежной насосной установки от короткого замыкания, перегрузки, срыва подачи напряжения, снижения сопротивления изоляции. Трансформатор преобразует напряжение сети в рабочее, имеет ступенчатую регулировку для подбора режима работы. Применяются также преобразователи частоты для бесступенчатой регулировки частоты вращения электроцентробежной насосной установки и датчики давления и температуры электродвигателя, передающие сигнал об отклонении этих параметров от безопасных значений по силовому кабелю или сигнальной жиле.

Длина электроцентробежной насосной установки 25-30 м. При длине центробежного насоса и электродвигателя свыше 5-8 м (в зависимости от диаметра) они состоят из отдельных секций для удобства транспортировки и монтажа. Электроцентробежная насосная установка монтируется в вертикальном положении непосредственно в процессе спуска в скважину. Корпуса секций соединяют фланцами, валы — шлицевыми муфтами. Установка опускается на заданную глубину на насосно-компрессорных трубах, подвешенных к устьевой арматуре с герметическим вводом кабельной линии в скважину. Кабельная линия крепится к насосно-компрессорным трубам снаружи поясами. При работе электроцентробежной насосной установки продукция подаётся на поверхность по насосно-компрессорным трубам. Реже применяют электроцентробежные насосные установки без насосно-компрессорных труб с пакером, подвеской на кабель-канате и подачей продукции по обсадной колонне. Производительность электроцентробежной насосной установки для нефтяной скважин от 15-20 до 1400-2000 м3/сутки, напор до 2500-3000 м, мощность электродвигателя до 500 кВт, напряжение до 2000 В, температура откачиваемой среды до 180°С, давление до 25 МПа.

Электроцентробежная насосная установка для воды содержит заполненный водой электродвигатель и насос с 5-50 ступенями. Производительность его до 3000 м3/сутки, напор до 1500 м, мощность электродвигателя до 700 кВт, напряжение 3000 В, температура воды до 40°С.

Исследование скважин

Исследование скважин — комплекс методов для определения основных параметров нефтегазоводоносных пластов и скважин с помощью глубинных приборов; передача информации осуществляется по глубинному каналу связи.

Цель исследования — получение данных для составления проектов, контроль за разработкой месторождений. Различают геофизические, гидродинамические, газогидродинамические методы, также дебитометрию, шумометрию и др. При гидродинамических исследованиях определяют параметры, характеризующие сравнительно большие участки исследуемых пластов-коллекторов, а также технологические характеристики скважин, уточняют геологическое строение пласта-коллектора, определяют гидродинамическую связь между пластами и скважинами и др.

При помощи дебитометрии в работающих нагнетательных и добывающих скважинах выделяют интервалы притока флюидов к забоям скважин, определяют дебиты отдельных пропластков, проницаемость, пьезопроводность, контролируют состояние обсадной колонны, затрубного пространства скважин и др. При глубинных исследованиях применяются манометры, термометры, расходомеры, шумомеры, комплексные глубинные приборы для измерения давления, температуры, дебита, водосодержания флюида. При гидродинамических глубинных исследованиях используется автоматическая промысловая электронная лаборатория.




Поделиться:


Последнее изменение этой страницы: 2016-07-14; просмотров: 695; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.143.214.226 (0.007 с.)