Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Метаболизм и биологические функции

Поиск

Всасывание холина происходит в тонком кишечнике путем простой диффузии и, возможно, путем активного транспорта. В клетках эпителия кишечника и тканях он фосфорилируется до фосфохолина и участвует в образовании фосфатидилхолина (лецитина).

Основная транспортная форма холина в крови – в составе фосфатидилхолина липопротеинов высокой плотности (ЛПВП) (см. тему «Липиды и липопротеины»).

Кроме того, холин участвует в синтезе ацетилхолина и является донором метильных групп в реакции трансметилирования.

Авитаминоз

У человека холиновая недостаточность не описана. У экспериментальных животных холиновая недостаточность проявляется в виде жировой инфильтрации печени и других нарушениях синтеза липидов.

Применение

В медицинской практике используются препараты холина для лечения поражений печени, вызванных различными заболеваниями и интоксикациями.

Жирорастворимые витамины

Витамин А (ретинол)

Общая характеристика

Суточная потребность – 1,5 мг (5000 мЕ)

Распространение в природе. Продукты животного происхождения: печень рыб (трески и морского окуня), много в свиной и говяжьей печени, желтке яиц, сметане, цельном молоке. В растительных продуктах: моркови, томатах, свекле, салате содержатся каротиноиды, являющиеся провитаминами А. Поэтому частичное обеспечение витамином А происходит за счет растительных продуктов.

Структура и биологическая активность формы витамина А. Витамин А – это непредельный одноатомный спирт, состоящий из β-иононого кольца и боковой цепи из двух остатков изопрена, имеющей первичную спиртовую группу. Витамин А имеет витамеры А1 и А2. Витамин А2 содержит в кольце дополнительную двойную связь (обнаружен у пресноводных рыб):

 
 

В организме ретинол (спиртовая ОН-группа в боковой цепи) превращается в ретиналь (альдегид) и ретиноевую кислоту. Происходит последовательное окисление спиртовой группы ретинола. В тканях образуются производные витамина А – ретинилпальмитат, ретинилацетат и ретинилфосфат. Витамин А и его производные в тканях находятся в транс-конфигурации, за исключением сетчатки глаза, где образуются 11-цис-ретинол и 11-цис-ретиналь.

Известны три провитамина А: α-, β-, γ-каротины, отличающиеся по химическому строению и биологической активности. Наиболее активен β-каротин, который в клетках слизистой кишечника подвергается окислению по центральной двойной связи с участием фермента каротиндиоксигеназы, при этом образуется две молекулы активного ретиналя (в отличие от α- и γ-каротинов):

Метаболизм

Витамин А всасывается вместе с липидами, поэтому для осуществления механизма всасывания необходимо участие желчных кислот.

В слизистой оболочке кишечника ретинол образует эфиры с жирными кислотами и транспортируется в составе хиломикронов. В плазме ретинол связывается с ретинолсвязывающим белком (фракция α-глобулина) и доставляется к тканям. В сетчатке ретинол превращается в ретиналь, который входит в состав родопсина и играет важную роль в восприятии света. В печени эфиры ретинола депонируются, где часть его может превращаться в ретиналь и ретиноевую кислоту. Конъюгированная форма ретиноевой кислоты с глюкуроновой кислотой может выводиться с желчью.

Биохимические функции

Все формы витамина А и их эфиры регулируют следующие биохимические процессы:

1) нормальный рост и дифференцировку клеток развивающегося организма (эмбриона, растущего организма);

2) регуляцию деления и дифференцировки быстро пролиферирующих тканей: хрящевой, костной, сперматогенного эпителия и плаценты, эпителия кожи и слизистых;

3) участие в фотохимическом акте зрения.

Ретиноевая кислота не принимает участия в зрительном акте и осуществлении функции размножения, т.е. нормальном развитии плаценты при беременности и созревании сперматозоидов. Однако ретиноевая кислота стимулирует рост костей и мягких тканей. Остальные формы витамина А обеспечивают все основные его биологические функции.

Окончательно, механизм регуляции витамином А, процессов деления и дифференцировки клеток не выяснен. Возможно, данный процесс связан с запуском механизма репликации, а выраженное влияние на рост тканей – с регуляцией синтеза хондроитинсульфата в клетках хряща. Многие метаболические функции витаминов А в настоящее время неясны.

Наиболее детально изучено участие ретиналя в акте зрения. Как известно, сетчатка человека имеет два типа клеток – палочки и колбочки. Палочки реагируют на слабое сумеречное освещение, а колбочки на дневное и обеспечивают различение цветов.

Палочки содержат зрительный пигмент родопсин, а колбочки иодопсин. По своей природе эти пигменты являются сложными белками, состоящими из 11-цис-ретиналя и белка опсина. Однако, по строению родопсин и иодопсин различаются.

Родопсин находится в мембранных структурах – дисках, заполняющих наружный сегмент палочки (рис. 2).

 
 

Рис. 2. Строение зрительной палочки:

1 – наружный сегмент;

2 – прилегающий сегмент с митохондриям;

3 – тело клетки и ядро;

4 – аксон

 

Каждый диск представляет собой замкнутый уплощенный мембранный пузырек; палочка содержит около тысячи дисков, уложенных в стопку. Диски синтезируются в прилегающем сегменте палочки и отсюда поступают в наружный сегмент. С противоположного конца наружного сегмента время от времени отделяются частицы и фагоцитируются клетками пигментного эпителия. Процесс образования новых дисков и удаления старых происходит на протяжении всей жизни.

В мембранных дисках на долю родопсина приходится около 80% от всех белков мембраны. Молекулы родопсина пронизывают мембрану насквозь.

В зрительном акте можно выделить три процесса:

1) фотохимическая абсорбция света;

2) фотохимическая абсорбция света пигментом, в ходе которой он изменяется;

3) регенерация исходного пигмента.

Кванты света, поглощаемые родопсином (или иодопсином), вызывают фотоизомеризацию 11-цис-ретиналя в транс-ретиналь:

 


 

 
 

После этого происходит диссоциация транс-ретиналя и опсина и пигмент обесцвечивается. Поскольку пигменты встроены в мембраны светочувствительных клеток, то фотоизомеризация ретиналя приводит к местной деполяризации мембраны и возникновению электрического импульса, распространяющегося по нервному волокну. Регенерация исходного пигмента возможна прямым путем с участием ретинальизомеразы в сетчатке, но главным образом в печени. На свету в сетчатке этот процесс протекает медленно. В темноте регенерация родопсина максимальна, и протекает через образование транс-ретинола, цис-ретинола и 11-цис-ретинола. Отсутствие регенерации родопсина приводит к слепоте в ночное время.

Авитаминоз

Раннее проявление – это нарушение темновой адаптации, задержка роста в молодом возрасте, фолликулярный гиперкератоз, избыточное ороговение кожи, вызванное задержкой смены эпителия, сухость слизистых (как следствие замедленного обновления эпителия), ксерофтальмия (сухость конъюнктивы глаз), помутнение роговицы и ее размягчение (кератомаляция), также нарушение функции размножения (оплодотворяющей активности сперматозоидов).



Поделиться:


Последнее изменение этой страницы: 2016-06-29; просмотров: 356; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.226.248.17 (0.006 с.)