Мониторинг и анализ локальных сетей 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Мониторинг и анализ локальных сетей

Поиск

Постоянный контроль за работой локальной сети, составляющей основу любой корпоративной сети, необходим для поддержания ее в работоспособном состоя­нии. Контроль - это необходимый первый этап, который должен выполняться при управлении сетью. Ввиду важности этой функции ее часто отделяют от других функций систем управления и реализуют специальными средствами. Такое разделение функций контроля и собственно управления полезно для небольших и средних сетей, для которых установка интегрированной системы управления экономически нецелесообразна. Использование автономных средств контроля помо­гает администратору сети выявить проблемные участки и устройства сети, а их отключение или реконфигурацию он может выполнять в этом случае вручную.

Процесс контроля работы сети обычно делят на два этапа - мониторинг и анализ.

На этапе мониторинга выполняется более простая процедура - процедура сбора первичных данных о работе сети: статистики о количестве циркулирующих в сети кадров и пакетов различных протоколов, состоянии портов концентраторов, ком­мутаторов и маршрутизаторов и т. п.

Далее выполняется этап анализа, под которым понимается более сложный и интеллектуальный процесс осмысления собранной на этапе мониторинга информации, сопоставления ее с данными, полученными ранее, и выработки предполо­жений о возможных причинах замедленной или ненадежной работы сети.

Задачи мониторинга решаются программными и аппаратными измерителями, тестерами, сетевыми анализаторами, встроенными средствами мониторинга ком­муникационных устройств, а также агентами систем управления. Задача анализа требует более активного участия человека и использования таких сложных средств, как экспертные системы, аккумулирующие практический опыт многих сетевых специалистов.

 

7.3.1. Классификация средств мониторинга и анализа.

Все многообразие средств, применяемых для анализа и диагностики вычислитель­ных сетей, можно разделить на несколько крупных классов.

Агенты систем управления, поддерживающие функции одной из стандартных MIB и поставляющие информацию по протоколу SNMP или CMIP. Для полу­чения данных от агентов обычно требуется наличие системы управления, соби­рающей данные от агентов в автоматическом режиме.

Встроенные системы диагностики и управления (Embedded systems). Эти системы выполняются в виде программно-аппаратных модулей, устанавливаемых в коммуникационное оборудование, а также в виде программных модулей, встроенных в операционные системы. Они выполняют функции диагностики и управления только одним устройством, и в этом их основное отличие от цент­рализованных систем управления. Примером средств этого класса может служить модуль управления многосегментным повторителем Ethernet, реализую­щий функции автосегментации портов при обнаружении неисправностей, при­писывания портов внутренним сегментам повторителя и некоторые другие. Как правило, встроенные модули управления «по совместительству» выполняют роль SNMP-агентов, поставляющих данные о состоянии устройства для систем уп­равления.

Анализаторы протоколов (Protocol analyzers). Представляют собой программные или аппаратно-программные системы, которые ограничиваются в отличие от систем управления лишь функциями мониторинга и анализа графика в се­тях. Хороший анализатор протоколов может захватывать и декодировать паке­ты большого количества протоколов, применяемых в сетях, - обычно несколько десятков. Анализаторы протоколов позволяют установить некоторые логичес­кие условия для захвата отдельных пакетов и выполняют полное декодирова­ние захваченных пакетов, то есть показывают в удобной для специалиста форме вложенность пакетов протоколов разных уровней друг в друга с расшифровкой содержания отдельных полей каждого пакета.

Экспертные системы. Этот вид систем аккумулирует знания технических специалистов о выявлении причин аномальной работы сетей и возможных спосо­бах приведения сети в работоспособное состояние. Экспертные системы часто реализуются в виде отдельных подсистем различных средств мониторинга и анализа сетей: систем управления сетями, анализаторов протоколов, сетевых анализаторов. Простейшим вариантом экспертной системы является контекст­но-зависимая система помощи. Более сложные экспертные системы представляют собой, так называемые базы знаний, обладающие элементами искусственного интеллекта. Примерами таких систем являются экспертные системы, встроен­ные в систему управления Spectrum компании Cabletron и анализатора прото­колов Sniffer компании Network General. Работа экспертных систем состоит в анализе большого числа событий для выдачи пользователю краткого диагноза о причине неисправности сети.

Оборудование для диагностики и сертификации кабельных систем. Условно это оборудование можно поделить на четыре основные группы: сетевые мониторы, приборы для сертификации кабельных систем, кабельные сканеры и тестеры.

Сетевые мониторы (называемые также сетевыми анализаторами) предназначены для тестирование кабелей различных категорий. Сетевые мониторы собирают также данные о статистических показателях графика - средней интенсивности общего трафика сети, средней интенсивности потока пакетов с определенным типом ошибки и т. п. Эти устройства являются наиболее интеллектуальными устройствами из всех четырех групп устройств данного класса, так как работают не только на физическом, но и на канальном, а иногда и на сетевом уровнях.

Устройства для сертификации кабельных систем выполняют сертификацию в соответствии с требованиями одного из международных стандартов на ка­бельные системы.

Кабельные сканеры используются для диагностики медных кабельных систем.

Тестеры предназначены для проверки кабелей на отсутствие физического

Многофункциональные портативные устройства анализа и диагностики. В свя­зи с развитием технологии больших интегральных схем появилась возможность производства портативных приборов, которые совмещали бы функции несколь­ких устройств: кабельных сканеров, сетевых мониторов и анализаторов прото­колов.

 

7.3.2. Анализаторы протоколов.

Анализатор протоколов представляет собой либо специализированное устройство, либо персональный компьютер, обычно переносной, класса Notebook, оснащенный специальной сетевой картой и соответствующим программным обеспечением. При­меняемые сетевая карта и программное обеспечение должны соответствовать тех­нологии сети (Ethernet, Token Ring, FDDI, Fast Ethernet). Анализатор подключается к сети точно так же, как и обычный узел. Отличие состоит в том, что анализатор может принимать все пакеты данных, передаваемые по сети, в то время как обыч­ная станция - только адресованные ей. Для этого сетевой адаптер анализатора протоколов переводится в режим “беспорядочного» захвата - promiscuous mode.

Программное обеспечение анализатора состоит из ядра, поддерживающего работу сетевого адаптера и программного обеспечения, декодирующего протокол канального уровня, с которым работает сетевой адаптер, а также наиболее распространенные протоколы верхних уровней, например IP, TCP, ftp, telnet, HTTP, IPX, NCP, NetBEUI, DECnet и т. п. В состав некоторых анализаторов может входить также экспертная система, которая позволяет выдавать пользователю рекоменда­ции о том, какие эксперименты следует проводить в данной ситуации, что могут означать те или иные результаты измерений, как устранить некоторые виды неисправности сети.

Анализаторы протоколов имеют некоторые общие свойства. Возможность (кроме захвата пакетов) измерения среднестатистических показа­телей трафика в сегменте локальной сети, в котором установлен сетевой адап­тер анализатора. Обычно измеряется коэффициент использования сегмента, матрицы перекрестного трафика узлов, количество хороших и плохих кадров, прошедших через сегмент.

Возможность работы с несколькими агентами, поставляющими захваченные пакеты из разных сегментов локальной сети. Эти агенты чаще всего взаимодействуют с анализатором протоколов по собственному протоколу прикладного уровня, отличному от SNMP или CMIP.

Наличие развитого графического интерфейса, позволяющего представить результаты декодирования пакетов с разной степенью детализации.

Фильтрация захватываемых и отображаемых пакетов. Условия фильтрации задаются в зависимости от значения адресов назначения и источника, типа протокола или значения определенных полей пакета. Пакет либо игнорируется, либо записывается в буфер захвата. Использование фильтров значительно ускоряет и упрощает анализ, так как исключает захват или просмотр ненужных в данный момент пакетов.

Использование триггеров. Триггеры - это задаваемые администратором некоторые условия начала и прекращения процесса захвата данных из сети. Такими

условиями могут быть: время суток, продолжительность процесса захвата, появление определенных значений в кадрах данных. Триггеры могут использо­ваться совместно с фильтрами, позволяя более детально и тонко проводить анализ, а также продуктивнее расходовать ограниченный объем буфера захвата.

Многоканальность. Некоторые анализаторы протоколов позволяют проводить одновременную запись пакетов от нескольких сетевых адаптеров, что удобно для сопоставления процессов, происходящих в разных сегментах сети. Возможности анализа проблем сети на физическом уровне у анализаторов про­токолов минимальные, поскольку всю информацию они получают от стандартных сетевых адаптеров. Поэтому они передают и обобщают информацию физического уровня, которую сообщает им сетевой адаптер, а она во многом зависит от типа сетевого адаптера. Некоторые сетевые адаптеры сообщают более детальные данные об ошибках кадров и интенсивности коллизий в сегменте, а некоторые вообще не передают такую информацию верхним уровням протоколов, на которых работает анализатор протоколов.

С распространением серверов Windows NT все более популярным становится анализатор Network Monitor фирмы Microsoft. Он является частью сервера управления системой SMS, а также входит в стандартную поставку Windows NT Server, начиная с версии 4.0 (версия с усеченными функциями). Network Monitor в вер­сии SMS является многоканальным анализатором протоколов, поскольку может получать данные от нескольких агентов Network Monitor Agent, работающих в среде Windows NT Server, однако в каждый момент времени анализатор может работать только с одним агентом, так что сопоставить данные разных каналов с его помощью не удастся. Network Monitor поддерживает фильтры захвата (достаточно простые) и дисплейные фильтры, отображающие нужные кадры после захвата (бо­лее сложные). Экспертной системой Network Monitor не располагает.

 

7.3.3. Сетевые анализаторы.

Сетевые анализаторы представляют собой эталонные измерительные приборы для диагностики и сертификации кабелей и кабельных систем. Они могут с высокой точностью измерить все электрические параметры кабельных систем, а также работают на более высоких уровнях стека протоколов. Сетевые анализаторы генериру­ют синусоидальные сигналы в широком диапазоне частот, что позволяет измерять на приемной паре амплитудно-частотную характеристику и перекрестные навод­ки, затухание и суммарное затухание. Сетевой анализатор представляет собой ла­бораторный прибор больших размеров, достаточно сложный в обращении.

Многие производители дополняют сетевые анализаторы функциями статистичес­кого анализа графика - коэффициента использования сегмента, уровня широкове­щательного графика, процента ошибочных кадров, а также функциями анализатора протоколов, которые обеспечивают захват пакетов разных протоколов в соответ­ствии с условиями фильтров и декодирование пакетов.

 

7.3.4. Кабельные сканеры и тестеры.

Основное назначение кабельных сканеров - измерение электрических и механических параметров кабеля, параметра NEXT, затухания импеданса, схемы разводки пар проводников, уровня электрических шумов в кабеле. Точность измерений, произведенных этими устройствами, ниже, чем у сетевых анализаторов, но вполне достаточна для оценки соответствия кабеля стандарту.

Для определения местоположения неисправности кабельной системы (обрыва короткого замыкания, неправильно установленного разъема и т. д.) используете метод «отраженного импульса» (Time Domain Reflectometry, TDR). Суть этого метода состоит в том, что сканер излучает в кабель короткий электрический импульс и измеряет время задержки до прихода отраженного сигнала. По полярности отраженного импульса определяется характер повреждения кабеля (короткое замыкание или обрыв). В правильно установленном и подключенном кабеле от­раженный импульс почти отсутствует.

Точность измерения расстояния зависит от того, насколько точно известна ско­рость распространения электромагнитных волн в кабеле. В различных кабелях она будет разной. Скорость распространения электромагнитных волн в кабеле (Nominal Velocity of Propagation, NVP) обычно задается в процентах от скорости света вакууме. Современные сканеры содержат в себе электронную таблицу данных с NVP для всех основных типов кабелей, что дает возможность пользователю устанавливать эти параметры самостоятельно после предварительной калибровки.

Кабельные сканеры - это портативные приборы, которые обслуживающий пер­сонал может постоянно носить с собой.

Кабельные тестеры - наиболее простые и дешевые приборы для диагностики кабеля. Они позволяют определить непрерывность кабеля, однако, в отличие oт кабельных сканеров, не дают ответа на вопрос о том, в каком месте произошел сбой.

 

7.3.5. Многофункциональные портативные приборы мониторинга.

В последнее время начали выпускаться многофункциональные портативные при­боры, которые объединяют в себе возможности кабельных сканеров, анализаторов протоколов и даже некоторые функции систем управления, сохраняя в то же вре­мя такое важное свойство, как портативность. Многофункциональные приборы мониторинга имеют специализированный физический интерфейс, позволяющим выявлять проблемы и тестировать кабели на физическом уровне, который допол­няется микропроцессором с программным обеспечением для выполнения высоко­уровневых функций.

Рассмотрим типичный набор функций и свойств такого прибора, который оказывается очень полезным для диагностики причин разнообразных неполадок в сети происходящих на всех уровнях стека протоколов, от физического до прикладного.

 

Интерфейс пользователя.

Прибор обычно предоставляет пользователю удобный и интуитивно понятный интерфейс, основанный на системе меню. Графический интерфейс пользователя реализован на многострочном жидкокристаллическом дисплее и индикаторах состояния на светодиодах, извещающих пользователя о наиболее общих проблемах наблюдаемых сетей. Имеется обширный файл подсказок оператору с уровневым доступом в соответствии с контекстом. Информация о состоянии сети представляется таким образом, что пользователи любой квалификации могут ее быстро понять.

 

Функции проверки аппаратуры и кабелей.

Многофункциональные приборы сочетают наиболее часто используемые на прак­тике функции кабельных сканеров с рядом новых возможностей тестирования.

 

Сканирование кабеля.

Функция позволяет измерять длину кабеля, расстояние до самого серьезного де­фекта и распределение импеданса по длине кабеля. При проверке неэкранированной витой пары могут быть выявлены следующие ошибки: расщепленная пара, обрывы, короткое замыкание и другие виды нарушения соединения.

Для сетей Ethernet на коаксиальном кабеле эти проверки могут быть осуществ­лены на работающей сети.

 

Функция определения распределения кабельных жил.

Осуществляет проверку правильности подсоединения жил, наличие промежуточ­ных разрывов и перемычек на витых парах. На дисплей выводится перечень свя­занных между собой контактных групп.

 

Функция определения карты кабелей.

Используется для составления карты основных кабелей и кабелей, ответвляющих­ся от центрального помещения.

 

Автоматическая проверка кабеля.

В зависимости от конфигурации возможно определить длину, импеданс, схему подключения жил, затухание и параметр NEXT на частоте до 100 МГц. Автоматическая проверка выполняется для:

- коаксиальных кабелей;

- экранированной витой пары с импедансом 150 Ом;

- неэкранированной витой пары с сопротивлением 100 Ом.

Целостность цепи при проверке постоянным током.

Эта функция используется при проверке коаксиальных кабелей для верификации правильности используемых терминаторов и их установки.

 

Определение номинальной скорости распространения.

Функция вычисляет номинальную скорость распространения (Nominal Velocity of Propagation, NVP) по кабелю известной длины и дополнительно сохраняет полу­ченные результаты в файле для определяемого пользователем типа кабеля (User Defined cable type) или стандартного кабеля.

 

Комплексная автоматическая проверка пары «сетевой адаптер-концентратор»

Этот комплексный тест позволяет последовательно подключить прибор между конечным узлом сети и концентратором. Тест дает возможность автоматически определить местонахождение источника неисправности - кабель, концентратор, се­тевой адаптер или программное обеспечение станции.

 

Автоматическая проверка сетевых адаптеров.

Проверяет правильность функционирования вновь установленных или «подозрительных» сетевых адаптеров. Для сетей Ethernet по итогам проверки сообща­ются: МАС-адрес, уровень напряжения сигналов (а также присутствие и полярность импульсов Link Test для 10BASE-T). Если сигнал не обнаружен на сетевом адаптере, то тест автоматически сканирует соединительный разъем и кабель для их диагностики.

 

Функции сбора статистики.

Эти функции позволяют в реальном масштабе времени проследить за изменением наиболее важных параметров, характеризующих «здоровье» сегментов сети. Ста­тистика обычно собирается с разной степенью детализации по разным группам.

 

Сетевая статистика.

В этой группе собраны наиболее важные статистические показатели - коэффициент использования сегмента (utilization), уровень коллизий, уровень ошибок и уровень широковещательного графика. Превышение этими показателями опре­деленных порогов в первую очередь говорят о проблемах в том сегменте сети, к которому подключен многофункциональный прибор.

 

Статистика ошибочных кадров.

Эта функция позволяет отслеживать все типы ошибочных кадров для определенной технологии. Например, для технологии Ethernet характерны следующие типы ошибочных кадров.

Укороченные кадры (Short frames). Это кадры, имеющие длину, меньше допустимой, то есть меньше 64 байт. Иногда этот тип кадров дифференцируют на два класса - просто короткие кадры (short), у которых имеется коррект­ная контрольная сумма, и «коротышки» (runts), не имеющие корректной кон­трольной суммы. Наиболее вероятными причинами появления укороченных кадров являются неисправные сетевые адаптеры и их драйверы.

Удлиненные кадры (Jabbers). Это кадры, имеющие длину, превышающую допустимое значение в 1518 байт с хорошей или плохой контрольной суммой. Удлиненные кадры являются следствием затянувшейся передачи, которая по­является из-за неисправностей сетевых адаптеров.

Кадры нормальных размеров, но с плохой контрольной суммой (Bad FCS) и кадры с ошибками выравнивания по границе байта. Кадры с неверной конт­рольной суммой являются следствием множества причин - плохих адаптеров, помех на кабелях, плохих контактов, некорректно работающих портов повтори­телей, мостов, коммутаторов и маршрутизаторов. Ошибка выравнивания всегда сопровождается ошибкой по контрольной сумме, поэтому некоторые средства анализа графика не делают между ними различий. Ошибка выравнивания мо­жет быть следствием прекращения передачи кадра при распознавании колли­зии передающим адаптером.

Кадры-призраки (ghosts) являются результатом электромагнитных наводок на кабеле. Они воспринимаются сетевыми адаптерами как кадры, не имеющие нормального признака начала кадра - 10101011. Кадры-призраки имеют дли­ну более 72 байт, в противном случае они классифицируются как удаленные коллизии. Количество обнаруженных кадров-призраков в большой степени за­висит от точки подключения сетевого анализатора. Причинами их возникнове­ния являются петли заземления и другие проблемы с кабельной системой. Знание процентного распределения общего количества ошибочных кадров по их типам может многое подсказать администратору о возможных причинах непо­ладок в сети. Даже небольшой процент ошибочных кадров может привести к зна­чительному снижению полезной пропускной способности сети, если протоколы, восстанавливающие искаженные кадры, работают с большими тайм-аутами ожи­дания квитанций. Считается, что в нормально работающей сети процент ошибоч­ных кадров не должен превышать 0,01 %, то есть не более 1 ошибочного кадра из 10 000.

 

Статистика по коллизиям.

Эта группа характеристик дает информацию о количестве и видах коллизий, отме­ченных на сегменте сети, позволяет определить наличие и местонахождение про­блемы. Анализаторы протоколов обычно не могут дать дифференцированной картины распределения общего числа коллизий по их отдельным типам, в то же время знание преобладающего типа коллизий может помочь понять причину пло­хой работы сети.

Ниже приведены основные типы коллизий сети Ethernet.

Локальная коллизия (Local Collision). Является результатом одновременной передачи двух или более узлов, принадлежащих к тому сегменту, в котором производятся измерения. Если многофункциональный прибор не генерирует кадры, то в сети на витой паре или волоконно-оптическом кабеле локальные коллизии не фиксируются. Слишком высокий уровень локальных коллизий является следствием проблем с кабельной системой.

Удаленная коллизия (Remote Collision). Эти коллизии происходят на другой стороне повторителя (по отношению к тому сегменту, в котором установлен измерительный прибор). В сетях, построенных на многопортовых повторите­лях (lOBase-T, lOBase-FL/FB, 100Base-TX/FX/T4, Gigabit Ethernet), все изме­ряемые коллизии являются удаленными (кроме тех случаев, когда анализатор сам генерирует кадры и может быть виновником коллизии). Не все анализато­ры протоколов и средства мониторинга одинаковым образом фиксируют уда­ленные коллизии. Это происходит из-за того, что некоторые измерительные средства и системы не фиксируют коллизии, происходящие при передаче пре­амбулы.

Поздняя коллизия (Late Collision). Это коллизия, которая происходит после пе­редачи первых 64 байт кадра (по протоколу Ethernet коллизия должна обнаруживаться при передаче первых 64 байт кадра). Результатом поздней коллизии будет кадр, который имеет длину более 64 байт и содержит неверное значение контрольной суммы. Чаще всего это указывает на то, что сетевой адаптер, являющийся источником конфликта, оказывается не в состоянии правильно прослушивать линию и поэтому не может вовремя остановить передачу. Другой причиной поздней коллизии является слишком большая длина кабельной системы или слишком большое количество промежуточных повторителей, приводящее к пре­вышению максимального значения времени двойного оборота сигнала.

Средняя интенсивность коллизий в нормально работающей сети должна быть меньше 5 %. Большие всплески (более 20 %) могут быть индикатором кабельных проблем.

 

Распределение используемых сетевых протоколов.

Эта статистическая группа относится к протоколам сетевого уровня. На дисплее отображается список основных протоколов в убывающем порядке относительно процентного соотношения кадров, содержащих пакеты данного протокола к обще­му числу кадров в сети.

Основные отправители (Tор Sendes)

Функция позволяет отслеживать наиболее активные передающие узлы локальной сети. Прибор можно настроить на фильтрацию по единственному адресу и выявить список основных отправителей кадров для данной станции. Данные отражаются на дисплее в виде диаграммы вместе с перечнем основных отправителей кадров.

 

Основные получатели (Top Receivers).

Функция позволяет следить за наиболее активными узлами-получателями сети. Информация отображается в виде, аналогичном приведенному выше.

 

Основные генераторы широковещательного трафика (Top broadcasted)

Функция выявляет станции сети, которые больше остальных генерируют кадры с широковещательными и групповыми адресами.

 

Генерирование трафика (Traffic Generation).

Прибор может генерировать график для проверки работы сети при повышенной нагрузке. Трафик может генерироваться параллельно с активизированными функ­циями Сетевая статистика. Статистика ошибочных кадров и Статистика по коллизиям.

Пользователь может задать параметры генерируемого трафика, такие как интенсивность и размер кадров. Для тестирования мостов и маршрутизаторов прибор может автоматически создавать заголовки IP- и IPX-пакетов, и все что требуется от оператора - это внести адреса источника и назначения.

В ходе испытаний пользователь может увеличить на ходу размер и частоту следования кадров с помощью клавиш управления курсором. Это особенно ценно при поиске источника проблем производительности сети и условий возникнове­ния отказов.

 

Функции анализа протоколов.

Обычно портативные многофункциональные приборы поддерживают декодирова­ние и анализ только основных протоколов локальных сетей, таких как протоколы стеков TCP/IP, Novell NetWare, NetBIOS и Banyan VINES.

В некоторых многофункциональных приборах отсутствует возможность декодирования захваченных пакетов, как в анализаторах протоколов, а в место этого

собирается статистика о наиболее важных пакетах, свидетельствующих о наличии проблем в сетях. Например, при анализе протоколов стека TCP/IP собирается статистика по пакетам протокола ICMP, с помощью которого маршрутизаторы сообщают конечным узлам о возникновении разного рода ошибок. Для ручной проверки достижимости узлов сети в приборы включается поддержка утилиты IP Ping, а также аналогичных по назначению утилит NetWare Ping и NetBIOS Ping.

 

7.3.6. Мониторинг локальных сетей на основе коммутаторов.

Наблюдение за графиком.

Так как перегрузки процессоров портов и других обрабатывающих элементов ком­мутатора могут приводить к потерям кадров, то функция наблюдения за распреде­лением графика в сети, построенной на основе коммутаторов, очень важна.

Однако если сам коммутатор не снабжен встроенным агентом SNMP для каждого своего порта, то задача слежения за графиком, традиционно решаемая в сетях с разделяемыми средами с помощью установки в сеть внешнего анализато­ра протоколов, очень усложняется.

Обычно в традиционных сетях анализатор протоколов или многофункциональ­ный прибор подключался к свободному порту концентратора, что позволяло ему наблюдать за всем графиком, передаваемым между любыми узлами сети.

Если же анализатор протокола подключить к свободному порту коммутатора, то он не зафиксирует почти ничего, так как кадры ему передавать никто не будет, а чужие кадры в его порт также направляться не будут. Единственный вид трафика, который будет фиксировать анализатор, - это график широковещательных па­кетов, которые будут передаваться всем узлам сети, а также трафик кадров с неизвестными коммутатору адресами назначения. В случае когда сеть разделена на виртуальные сети, анализатор протоколов будет фиксировать только широковеща­тельный трафик своей виртуальной сети.

Чтобы анализаторами протоколов можно было по-прежнему пользоваться и в коммутируемых сетях, производители коммутаторов снабжают свои устройства функцией зеркального отображения графика любого порта на специальный порт. К специальному порту подключается анализатор протоколов, а затем на коммута­тор подается команда через его модуль SNMP-управления для отображения трафика какого-либо порта на специальный порт.

Наличие функции зеркализации портов частично снимает проблему, но оставляет некоторые вопросы. Например, как просматривать одновременно трафик двух портов или трафик порта, работающего в полнодуплексном режиме.

Более надежным способом слежения за графиком, проходящим через порты ком­мутатора, является замена анализатора протокола на агенты RMON MIB для каждо­го порта коммутатора.

Агент RMON выполняет все функции хорошего анализатора протокола для протоколов Ethernet и Token Ring, собирая детальную информацию об интенсив­ности графика, различных типах плохих кадров, о потерянных кадрах, причем самостоятельно строя временные ряды для каждого фиксируемого параметра. Кроме того, агент RMON может самостоятельно строить матрицы перекрестного графика между узлами сети, которые очень нужны для анализа эффективности примене­ния коммутатора.

Так как агент RMON, реализующий все 9 групп объектов Ethernet, стоит весьма дорого, то производители для снижения стоимости коммутатора часто реализуют только первые несколько групп объектов RMON MIB. Другим при­емом снижения стоимости коммутатора является использование одного агента RMON для нескольких портов. Такой агент по очереди подключается к нужному порту, позволяя снять с него требуемые статистические данные.

 

Управление виртуальными сетями.

Виртуальные локальные сети VLAN порождают проблемы для традиционных систем управления на платформе SNMP как при их создании, так и при наблю­дении за их работой.

Как правило, для создания виртуальных сетей требуется специальное программ­ное обеспечение компании-производителя, которое работает на платформе систе­мы управления, например HP Open View. Сами платформы систем управления этот процесс поддержать не могут в основном из-за долгого отсутствия стандарта на виртуальные сети. Можно надеяться, что появление стандарта 802.1Q изменит ситуацию в этой области.

Наблюдение за работой виртуальных сетей также создает проблемы для традици­онных систем управления. При создании карты сети, включающей виртуальные сети, необходимо отображать как физическую структуру сети, так и ее логическую струк­туру, соответствующую связям отдельных узлов виртуальной сети. При этом по же­ланию администратора система управления должна уметь отображать соответствие логических и физических связей в сети, то есть на одном физическом канале должны отображаться все или отдельные пути виртуальных сетей.

К сожалению, многие системы управления либо вообще не отображают виртуальные сети, либо делают это очень неудобным для пользователя способом, что вынуждает обращаться к менеджерам компаний-производителей для решения этой задачи.

Выводы

Мониторинг и анализ сети представляют собой важные этапы контроля работы сети. Для выполнения этих этапов разработан ряд средств, применяемых авто­номно в тех случаях, когда применение интегрированной системы управления экономически неоправданно.

В состав автономных средств мониторинга и анализа сети входят встроенные средства диагностики, анализаторы протоколов, экспертные системы, сетевые анализаторы, кабельные сканеры и тестеры, многофункциональные приборы.

Анализаторы протоколов чаще всего представляют собой специальное программ­ное обеспечение для персональных компьютеров и ноутбуков, которое перево­дит сетевой адаптер компьютера в режим «беспорядочного» захвата всех кадров. Анализатор протоколов выполняет декодирование захваченных кадров для вло­женных пакетов протоколов всех уровней, включая прикладной.

Сетевые анализаторы представляют собой прецизионные приборы для сертификации кабельных систем по международным стандартам. Кроме того, эти устройства могут выполнять некоторые функции анализаторов протоколов.

Кабельные сканеры являются портативными приборами, которые могут измерить электрические параметры кабелей, а также обнаружить место повреждения ка­беля. Кабельные тестеры представляют собой наиболее простые портативные приборы, способные обнаружить неисправность кабеля.

Многофункциональные портативные приборы сочетают в себе функции кабельных сканеров и анализаторов протоколов. Они снабжены многострочны­ми дисплеями, контекстно-чувствительной системой помощи, встроенным микропроцессором с программным обеспечением и позволяют выполнять ком­плексную проверку сегментов сети на всех уровнях, от физического (что не умеют делать анализаторы протоколов), до прикладного. Отличаются от ана­лизаторов протоколов поддержкой только базового набора протоколов локаль­ных сетей.

 

Вопросы и упражнения

1. К какой из пяти стандартных функциональных групп системы управления относится функция концентратора Ethernet по обнулению поля данных в кад­рах, поступающих на порты, к которым не подключен узел назначения?

2. К какому уровню модели TMN относится большинство выпускаемых сегодня систем управления?

3. Как объяснить, что наличие в одном сегменте сети NetWare сравнительно небольшого числа (3 %) ошибочных кадров Ethernet резко снижает пропускную способность сети? Рассчитайте коэффициент снижения полезной пропускной способности сети, если при передаче файлов используется метод квитирова­ния с простоями, причем тайм-аут ожидания квитанции составляет 0,5 с, сер­вер тратит на подготовку очередного кадра данных 20 мкс после получения квитанции от клиентской станции, а клиентская станция отсылает квитанции через 30 мкс после получения очередного кадра данных от сервера. Служеб­ная информация протоколов верхних уровней занимает в кадре Ethernet 58 байт, причем данные передаются в кадрах Ethernet с полем данных максимального размера в 1500 байт, а квитанции помещаются в заголовке протокола при­кладного уровня.

4. Какая функция в системах управления системами соответствует функции по­строения карты сети в системах управления сетями?

5. Какое свойство агента, поддерживающего RMON MIB, послужило поводом назвать данную MIB базой управляющих данных для удаленного мониторинга?

6. Какие действия предпринимает агент SNMP, если его сообщение о сбое управ­ляемого устройства, посланное с помощью команды trap, потеряется?

7. Можно ли построить систему управления, работающую без платформы управления?

8. Относится ли средство, называемое community string, к средствам аутентификации?

9. Какую базу данных использует протокол CMIP для воздействия сразу на группу агентов?

10. У вас есть подозрение, что часть коллизий в вашей сети вызвана электромагнитными наводками. Сможет ли анализатор протоколов прояснить ситуацию?

 

 



Поделиться:


Последнее изменение этой страницы: 2016-06-29; просмотров: 847; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.229.217 (0.02 с.)