Классификация маршрутизаторов по областям применения



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Классификация маршрутизаторов по областям применения



По областям применения маршрутизаторы делятся на несколько классов.

Магистральные маршрутизаторы (backbone routers) предназначены для пост­роения центральной сети корпорации. Центральная сеть может состоять из большого количества локальных сетей, разбросанных по разным зданиям и использу­ющих самые разнообразные сетевые технологии, типы компьютеров и опера­ционных систем. Магистральные маршрутизаторы — это наиболее мощные устройства, способные обрабатывать несколько сотен тысяч или даже несколько миллионов пакетов в секунду, имеющие большое количество интерфейсов ло­кальных и глобальных сетей. Поддерживаются не только среднескоростные ин­терфейсы глобальных сетей, такие как Т1/Е1, но и высокоскоростные, например, АТМ или SDH со скоростями 155 Мбит/с или 622 Мбит/с. Чаще всего магист­ральный маршрутизатор конструктивно выполнен по модульной схеме на основе шасси с большим количеством слотов — до 12-14. Большое внимание уделяется в магистральных моделях надежности и отказоустойчивости маршрутизатора, ко­торая достигается за счет системы терморегуляции, избыточных источников питания, заменяемых «на ходу» (hot swap) модулей, а также симметричного муль-типроцессирования. Примерами магистральных маршрутизаторов могут служить маршрутизаторы Backbone Concentrator Node (BCN) компании Nortel Networks (ранее Bay Networks), Cisco 7500, Cisco 12000.

Маршрутизаторы региональных отделений соединяют региональные отделения между собой и с центральной сетью. Сеть регионального отделения, так же как и центральная сеть, может состоять из нескольких локальных сетей. Такой маршру­тизатор обычно представляет собой некоторую упрощенную версию магистраль­ного маршрутизатора. Если он выполнен на основе шасси, то количество слотов его шасси меньше: 4-5. Возможен также конструктив с фиксированным количе­ством портов. Поддерживаемые интерфейсы локальных и глобальных сетей менее скоростные. Примерами маршрутизаторов региональных отделений могут служить маршрутизаторы BLN, ASN компании Nortel Networks, Cisco 3600, Cisco 2500, NetBuilder II компании 3Com. Это наиболее обширный класс выпускаемых марш­рутизаторов, характеристики которых могут приближаться к характеристикам магистральных маршрутизаторов, а могут и опускаться до характеристик маршрутизаторов удаленных офисов.

Маршрутизаторы удаленных офисов соединяют, как правило, единственную локальную сеть удаленного офиса с центральной сетью или сетью регионального отделения по глобальной связи. В максимальном варианте такие маршрутизато­ры могут поддерживать и два интерфейса локальных сетей. Как правило, интер­фейс локальной сети — это Ethernet 10 Мбит/с, а интерфейс глобальной сети — выделенная линия со скоростью 64 Кбит/с, 1,544 или 2 Мбит/с. Маршрутизатор удаленного офиса может поддерживать работу по коммутируемой телефонной линии в качестве резервной связи для выделенного канала. Существует очень большое количество типов маршрутизаторов удаленных офисов. Это объясняет­ся как массовостью потенциальных потребителей, так и специализацией такого типа устройств, проявляющейся в поддержке одного конкретного типа глобаль­ной связи. Например, существуют маршрутизаторы, работающие только по сети ISDN, существуют модели только для аналоговых выделенных линий и т. п. Ти­пичными представителями этого класса являются маршрутизаторы Nautika ком­пании Nortel Networks, Cisco 1600, Office Connect компании 3Com, семейство Pipeline компании Ascend.

Маршрутизаторы локальных сетей (коммутаторы 3-го уровня) предназначены для разделения крупных локальных сетей на подсети. Основное требование, предъяв­ляемое к ним, — высокая скорость маршрутизации, так как в такой конфигурации отсутствуют низкоскоростные порты, такие как модемные порты 33,6 Кбит/с или цифровые порты 64 Кбит/с. Все порты имеют скорость по крайней мере 10 Мбит/с, а многие работают на скорости 100 Мбит/с. Примерами коммутаторов 3-го уровня служат коммутаторы CoreBuilder 3500 компаний ЗСоm, Accelar 1200 компании Nortel Networks, Waveswitch 9000 компании Plaintree, Turboiron Switching Router компании Foudry Networks.

В зависимости от области применения маршрутизаторы обладают различными основными и дополнительными техническими характеристиками.

 

Основные технические характеристики маршрутизатора.

Основные технические характеристики маршрутизатора связаны с тем, как он ре­шает свою главную задачу — маршрутизацию пакетов в составной сети. Именно эти характеристики прежде всего определяют возможности и сферу применения того или иного маршрутизатора.

Перечень поддерживаемых сетевых протоколов. Магистральный маршрутизатор должен поддерживать большое количество сетевых протоколов и протоколов мар­шрутизации, чтобы обеспечивать трафик всех существующих на предприятии вычислительных систем (в том числе и устаревших, но все еще успешно эксплуа­тирующихся, так называемых унаследованных — legacy), а также систем, которые могут появиться на предприятии в ближайшем будущем. Если центральная сеть образует отдельную автономную систему Internet, то потребуется поддержка и специфических протоколов маршрутизации этой сети, таких как EGP и BGP. Про­граммное обеспечение магистральных маршрутизаторов обычно строится по мо­дульному принципу, поэтому при возникновении потребности можно докупать и добавлять программные модули, реализующие недостающие протоколы.

Перечень поддерживаемых сетевых протоколов обычно включает протоколы IP, CONS и CLNS OSI, IPX, AppleTalk, DECnet, Banyan VINES, Xerox XNS.

Перечень протоколов маршрутизации составляют протоколы IP RIP, IPX RIP, NLSP, OSPF, IS-IS OSI, EGP, BGP, VINES RTP, AppleTalk RTMP.

Перечень поддерживаемых интерфейсов локальных и глобальных сетей. Для ло­кальных сетей — это интерфейсы, реализующие физические и канальные протоко­лы сетей Ethernet, Token Ring, FDDI, Fast Ethernet, Gigabit Ethernet, lOOVG-AnyLAN и АТМ.

Для глобальных связей — это интерфейсы физического уровня для связи с ап­паратурой передачи данных, а также протоколы канального и сетевого уровней, необходимые для подключения к глобальным сетям с коммутацией каналов и па­кетов.

Поддерживаются интерфейсы последовательных линий (serial lines) RS-232, RS-449/422, V.35 (для передачи данных со скоростями до 2-6 Мбит/с), высокоско­ростной интерфейс HSSI, обеспечивающий скорость до 52 Мбит/с, а также интер­фейсы с цифровыми каналами Т1/Е1, ТЗ/ЕЗ и интерфейсами BRI и PRI цифровой сети ISDN. Некоторые маршрутизаторы имеют аппаратуру связи с цифровыми глобальными каналами, что исключает необходимость использования внешних ус­тройств сопряжения с этими каналами.

В набор поддерживаемых глобальных технологий обычно входят технологии Х.25, frame relay, ISDN и коммутируемых аналоговых телефонных сетей, сетей АТМ, а также поддержка протокола канального уровня РРР.

Общая производительность маршрутизатора. Высокая производительность мар­шрутизации важна для работы с высокоскоростными локальными сетями, а также для поддержки новых высокоскоростных глобальных технологий, таких как frame relay, ТЗ/ЕЗ, SDH и АТМ. Общая производительность маршрутизатора зависит от многих факторов, наиболее важными из которых являются: тип используемых про­цессоров, эффективность программной реализации протоколов, архитектурная орга­низация вычислительных и интерфейсных модулей. Общая производительность маршрутизаторов колеблется от нескольких десятков тысяч пакетов в секунду до нескольких миллионов пакетов в секунду. Наиболее производительные маршрутиза­торы имеют мультипроцессорную архитектуру, сочетающую симметричные и асим­метричные свойства — несколько мощных центральных процессоров по симметричной схеме выполняют функции вычисления таблицы маршрутизации, а менее мощные процессоры в интерфейсных модулях занимаются передачей пакетов на подключен­ные к ним сети и пересылкой пакетов на основании части таблицы маршрутизации, кэшированной в локальной памяти интерфейсного модуля.

Магистральные маршрутизаторы обычно поддерживают максимальный набор протоколов и интерфейсов и обладают высокой общей производительностью в один-два миллиона пакетов в секунду. Маршрутизаторы удаленных офисов поддер­живают один-два протокола локальных сетей и низкоскоростные глобальные про­токолы, общая производительность таких маршрутизаторов обычно составляет от 5 до 20-30 тысяч пакетов в секунду.

Маршрутизаторы региональных отделений занимают промежуточное положе­ние, поэтому их иногда не выделяют в отдельный класс устройств.

Наиболее высокой производительностью обладают коммутаторы 3-го уровня, особенности которых рассмотрены ниже.

 

Дополнительные функциональные возможности маршрутизаторов.

Наряду с функцией маршрутизации многие маршрутизаторы обладают следую­щими важными дополнительными функциональными возможностями, которые значительно расширяют сферу применения этих устройств.

Поддержка одновременно нескольких протоколов маршрутизации. В протоколах маршрутизации обычно предполагается, что маршрутизатор строит свою таблицу на основе работы только этого одного протокола. Деление Internet на автономные системы также направлено на исключение использования в одной автономной системе нескольких протоколов маршрутизации. Тем не менее иногда в большой корпоративной сети приходится поддерживать одновременно несколько таких про­токолов, чаще всего это складывается исторически. При этом таблица маршрутиза­ции может получаться противоречивой — разные протоколы маршрутизации могут выбрать разные следующие маршрутизаторы для какой-либо сети назначения. Большинство маршрутизаторов решает эту проблему за счет придания приорите­тов решениям разных протоколов маршрутизации. Высший приоритет отдается статическим маршрутам (администратор всегда прав), следующий приоритет име­ют маршруты, выбранные протоколами состояния связей, такими как OSPF или NLSP, а низшим приоритетов обладают маршруты дистанционно-векторных про­токолов, как самых несовершенных.

Приоритеты сетевых протоколов. Можно установить приоритет одного прото­кола сетевого уровня над другими. На выбор маршрутов эти приоритеты не оказывают никакого влияния, они влияют только на порядок, в котором многопрото­кольный маршрутизатор обслуживает пакеты разных сетевых протоколов. Это свой­ство бывает полезно в случае недостаточной полосы пропускания кабельной системы и существования трафика, чувствительного к временным задержкам, например Графика SNA или голосового трафика, передаваемого одним из сетевых протоко­лов.

Поддержка политики маршрутных объявлений. В большинстве протоколов об­мена маршрутной информации (RIP, OSPF, NLSP) предполагается, что маршрутизатор объявляет в своих сообщениях обо всех сетях, которые ему известны. Аналогично предполагается, что маршрутизатор при построении своей таблицы учитывает все адреса сетей, которые поступают ему от других маршрутизаторов сети. Однако существуют ситуации, когда администратор хотел бы скрыть суще­ствование некоторых сетей в определенной части своей сети от других администра­торов, например, по соображениям безопасности. Или же администратор хотел бы запретить некоторые маршруты, которые могли бы существовать в сети. При ста­тическом построении таблиц маршрутизации решение таких проблем не составля­ет труда. Динамические же протоколы маршрутизации не позволяют стандартным способом реализовывать подобные ограничения. Существует только один широко используемый протокол динамической маршрутизации, в котором описана воз­можность существования правил (policy), ограничивающих распространение неко­торых адресов в объявлениях, — это протокол BGP. Необходимость поддержки таких правил в протоколе BGP понятна, так как это протокол обмена маршрутной информацией между автономными системами, где велика потребность в админи­стративном регулировании маршрутов (например, некоторый поставщик услуг Internet может не захотеть, чтобы через него транзитом проходил график другого поставщика услуг). Разработчики маршрутизаторов исправляют этот недостаток стандартов протоколов, вводя в маршрутизаторы поддержку правил передачи и использования маршрутной информации, подобных тем, которые рекомендует BGP.

Защита от широковещательных штормов (broadcast storm). Одна из характер­ных неисправностей сетевого программного обеспечения — самопроизвольная генерация с высокой интенсивностью широковещательных пакетов. Широковеща­тельным штормом считается ситуация, в которой процент широковещательных пакетов превышает 20 % от общего количества пакетов в сети. Обычный коммута­тор или мост слепо передает такие пакеты на все свои порты, как того требует его логика работы, засоряя, таким образом, сеть. Борьба с широковещательным штор­мом в сети, соединенной коммутаторами, требует от администратора отключения портов, генерирующих широковещательные пакеты. Маршрутизатор не распрост­раняет такие поврежденные пакеты, поскольку в круг его задач не входит ко­пирование широковещательных пакетов во все объединяемые им сети. Поэтому маршрутизатор является прекрасным средством борьбы с широковещательным штормом, правда, если сеть разделена на достаточное количество подсетей.

Поддержка немаршрутизируемых протоколов, таких как NetBIOS, NetBEUI или DEC LAT, которые не оперируют с таким понятием, как сеть. Маршрутизаторы могут обрабатывать пакеты таких протоколов двумя способами. В первом случае они могут работать с пакетами этих протоколов как мосты, то есть передавать их на основании изучения МАС-адресов. Маршрутизатор необ­ходимо сконфигурировать особым способом, чтобы по отношению к некоторым немаршрутизируемым протоколам на некоторых портах он выполнял функции моста, а по отношению к маршрутизируемым протоколам — функции марш­рутизатора. Такой мост/маршрутизатор иногда называют brouter (bridge плюс router).

Другим способом передачи пакетов немаршрутизируемых протоколов является инкапсуляция этих пакетов в пакеты какого-либо сетевого протокола. Некото­рые производители маршрутизаторов разработали собственные протоколы, спе­циально предназначенные для инкапсуляции немаршрутизируемых пакетов. Кроме того, существуют стандарты для инкапсуляции некоторых протоколов в другие, в основном в IP. Примером такого стандарта является протокол DLSw, определяющий методы инкапсуляции пакетов SDLC и NetBIOS в IP-пакеты, а также протоколы РРТР и L2TP, инкапсулирующие кадры протокола РРР в IP-пакеты. Более подробно технология инкапсуляции рассматривается в главе, посвященной межсетевому взаимодействию.

Разделение функций построения и использования таблицы маршрутизации. Ос­новная вычислительная работа проводится маршрутизатором при составлении таб­лицы маршрутизации с маршрутами ко всем известным ему сетям. Эта работа состоит в обмене пакетами протоколов маршрутизации, такими как RIP или OSPF, и вычислении оптимального пути к каждой целевой сети по некоторому критерию. Для вычисления оптимального пути на графе, как того требуют протоколы состо­яния связей, необходимы значительные вычислительные мощности. После того как таблица маршрутизации составлена, функция продвижения пакетов происхо­дит весьма просто — осуществляется просмотр таблицы и поиск совпадения полу­ченного адреса с адресом целевой сети. Если совпадение есть, то пакет передается на соответствующий порт маршрутизатора. Некоторые маршрутизаторы поддер­живают только функции продвижения пакетов по готовой таблице маршрутиза­ции. Такие маршрутизаторы являются усеченными маршрутизаторами, так как для их полноценной работы требуется наличие полнофункционального маршрутиза­тора, у которого можно взять готовую таблицу маршрутизации. Этот маршрутиза­тор часто называется сервером маршрутов. Отказ от самостоятельного выполнения функций построения таблицы маршрутизации резко удешевляет маршрутизатор и повышает его производительность. Примерами такого подхода являются маршру­тизаторы NetBuilder компании 3Com, поддерживающие фирменную технологию Boundary Routing, маршрутизирующие коммутаторы Catalyst 5000 компании Cisco Systems.

 

5.6.2. Корпоративные модульные концентраторы.

Большинство крупных фирм-производителей сетевого оборудования предлагает модульные концентраторы в качестве «коммутационного центра» корпоративной сети. Такие концентраторы отражают тенденцию перехода от полностью распреде­ленных локальных сетей 70-х годов на коаксиальном кабеле к централизованным коммуникационным решениям, активно воздействующим на передачу пакетов между сегментами и сетями. Модульные корпоративные концентраторы представляют собой многофункциональные устройства, которые могут включать несколько де­сятков модулей различного назначения: повторителей разных технологий, комму­таторов, удаленных мостов, маршрутизаторов и т. п., которые объединены в одном устройстве с модулями-агентами протокола SNMP, и, следовательно, позволяют централизованно объединять, управлять и обслуживать большое количество уст­ройств и сегментов, что очень удобно в сетях большого размера.

Модульный концентратор масштаба предприятия обычно обладает внутренней шиной или набором шин очень высокой производительности — до нескольких де­сятков гигабит в секунду, что позволяет реализовать одновременные соединения между модулями с высокой скоростью, гораздо большей, чем скорость внешних интерфейсов модулей. Основная идея разработчиков таких устройств заключается в создании программно настраиваемой конфигурации связей в сети, причем сами связи между устройствами и сегментами могут также поддерживаться с помощью различных методов: побитовой передачи данных повторителями, передачи кадров коммутаторами и передачи пакетов сетевых протоколов маршрутизаторами.

 

 

Внешние интерфейсы

 

Рис. 5.30. Структура корпоративного модульного концентратора

 

Пример структуры корпоративного концентратора приведен на рис. 5.30. Он имеет несколько шин для образования независимых разделяемых сегментов Ethernet 10 Мбит/с, Token Ring и FDDI, а также высокоскоростную шину в 10 Гбит/с для передач кадров и пакетов между модулями коммутации и маршрутизации. Каж­дый из модулей имеет внешние интерфейсы для подключения конечных узлов и внешних коммуникационных устройств — повторителей, коммутаторов, а также несколько интерфейсов с внутренними шинами концентратора. Концентратор рассчитан на подключение конечных узлов в основном к внешним интерфейсам повторителей (для образования разделяемых сегментов) и коммутаторов (для под­держки микросегментации). Уже готовые сегменты, то есть образованные внешними повторителями и коммутаторами, могут подключаться к внешним интерфейсам коммутаторов и маршрутизаторов корпоративного концентратора. Дальнейшее соединение разделяемых сегментов и коммутируемых узлов и сегментов происхо­дит модулями коммутации и маршрутизации концентратора по внутренним свя­зям с помощью высокоскоростной шины. Конечно, модули могут связываться между собой и через внешние интерфейсы, но такой способ нерационален, так как скорость обмена ограничивается при этом скоростью протокола интерфейса, напри­мер 10 Мбит/с или 100 Мбит/с. Внутренняя же шина соединяет модули на гораз­до более высокой скорости, примерно 10/N Гбит/с, где N — количество портов, одновременно требующих обмена. Внешние связи между модулями превращают корпоративный концентратор просто в стойку с установленными модулями, а внут­ренний обмен делает эту стойку единым устройством с общей системой программ­ного управления графиком. Обычно для конфигурирования модулей и связей между ними производители корпоративных концентраторов сопровождают их удобным программным обеспечением с графическим интерфейсом. Отдельный модуль уп­равления выполняет общие для всего концентратора функции: управления по про­токолу SNMP, согласование таблиц коммутации и маршрутизации в разных модулях, возможно использование этого модуля как межмодульной коммутационной фаб­рики вместо общей шины.

Примерами корпоративных многофункциональных концентраторов могут служить устройства System 5000 компании Nortel Networks, MMAC-Plus компании Cabletron Systems, CoreBuilder 6012 компании 3Com.

Ввиду того, что отказ корпоративного модульного концентратора приводит к очень тяжелым последствиям, в их конструкцию вносится большое количество средств обеспечения отказоустойчивости.

 

5.6.3. Стирание граней между коммутаторами и маршрутизаторами.

В классическом понимании терминов коммутатор — это устройство, принимающее решение о продвижении пакетов на основании заголовков протоколов 2-го уровня, то есть протоколов типа Ethernet или FDDI, а маршрутизатор - устройство, при­нимающее аналогичное решение на основании заголовков протоколов 3-го уровня, то есть уровня протоколов IP или IPX. В настоящее время наблюдается отчетли­вая тенденция по совмещению в одном устройстве функций коммутатора и марш­рутизатора.

 

Соотношение коммутации и маршрутизации в корпоративных сетях.

До недавнего времени сложившимся информационным потокам корпоративной сети наилучшим образом соответствовала следующая иерархическая структура. На нижнем уровне (уровне отделов) располагались сегменты сети, построенные на быстро работающих повторителях и коммутаторах. Сегменты включали в себя как рабочие станции так и серверы. В большинстве случаев было справедливо эмпири­ческое соотношение 80/20, в соответствии с которым основная часть графика (80 %) циркулировала внутри сегмента, то есть порождалась запросами пользователей рабочих станций к серверам своего же сегмента.

На более высоком уровне располагался маршрутизатор, к которому подключа­лось сравнительно небольшое количество внутренних сетей, построенные на ком­мутаторах. Через порты маршрутизатора проходил график обращений рабочих станций одних сетей к серверам других сетей. Известно, что маршрутизатор затра­чивает больше времени на обработку каждого пакета, чем коммутатор, поскольку он выполняет более сложную обработку трафика, включая интеллектуальные алгоритмы фильтрации, выбор маршрута при наличии нескольких возможных путей и т. п. С другой стороны, трафик, проходящий через порты маршрутизатора был менее интенсивный, чем внутрисегментный, поэтому сравнительно низкая произ­водительность маршрутизатора не делала его узким местом.

Сегодня ситуация в корпоративных сетях быстро меняется. Количество пользо­вателей стремительно растет. Пользователи избавляются от устаревающих текстовых приложений, отдавая предпочтение Web-интерфейсу. А завтра эти же пользовате­ли будут работать с аудио, видео, push и другими, абсолютно новыми приложени­ями, основанными на новых технологиях распространения пакетов, таких как IP Multicast и RSVP. Не работает и старое правило 80/20, сегодня большое количе­ство информации берется из публичных серверов Internet, а также из Web-серве­ров других подразделений предприятия, создавая большой межсетевой трафик. Существующие сети не оптимизировались для таких непредсказуемых потоков трафика, когда каждый может общаться почти с каждым. А с проникновением в корпоративные сети технологии Gigabit Ethernet эта проблема обострится еще больше. Таким образом, сегодня образовался большой разрыв между производительностью типичного маршрутизатора и типичного коммутатора. В этой ситуации возможны два решения: либо отказаться вообще от маршрутизации, либо увеличить ее производительность.

 

0тказ от маршрутизации.

3а последние годы основные усилия были сосредоточены в первом направлении:

- применять маршрутизацию как можно реже, только там, где от нее никак нельзя отказаться. Например, на границе между локальной и глобальной сетью. Отказ от маршрутизаторов означает переход к так называемой плоской сети, то есть сети, построенной только на коммутаторах, а значит, и отказ от всех интеллектуальных возможностей обработки трафика, присущих маршрутизаторам. Такой подход повышает производительность, но приводит к потере всех преимуществ, которые давали маршрутизаторы, а именно:

- маршрутизаторы более надежно, чем коммутаторы, изолируют части большой составной сети друг от друга, защищая их от ошибочных кадров, порождаемых неисправным программным или аппаратным обеспечением других сетей (на­пример, от широковещательных штормов);

- маршрутизаторы обладают более развитыми возможностями защиты от несанк­ционированного доступа за счет функций анализа и фильтрации трафика на более высоких уровнях: сетевом и транспортном;

- сеть, не разделенная маршрутизаторами, имеет ограничения на число узлов (для популярного протокола IP это ограничение составляет 255 узлов для сетей са­мого доступного класса С).

Из этого следует, что в сети необходимо сохранять функции маршрутизации в привычном смысле этого слова.

Что касается второго направления — повышение производительности маршрутизаторов, — сложилось так, что самые активные действия в этом направлении были предприняты производителями коммутаторов, наделявшими свои продукты некоторыми возможностями маршрутизаторов. Именно в модифицированных коммутаторах были впервые достигнуты скорости маршрутизации в 5-7 миллионов пакетов в секунду, а также опробованы многие важные концепции ускорения функций маршрутизации.

 

Коммутаторы 3-го уровня с классической маршрутизацией

Термин «коммутатор 3-го уровня» употребляется для обозначения целого спектра коммутаторов различного типа, в которые встроены функции маршрутизации пакетов. Функции коммутации и маршрутизации могут быть совмещены двумя способами:

Классическим, когда маршрутизация выполняется по каждому пакету, требующему передачи из сети в сеть, а коммутация выполняется для пакетов, принад­лежащих одной сети.

Нестандартным способом ускоренной маршрутизации, когда маршрутизируется несколько первых пакетов устойчивого потока, а все остальные пакеты этого потока коммутируются.

Рассмотрим первый способ.

Классический коммутатор 3-го уровня подобно обычному коммутатору захватывает все кадры своими портами независимо от их МАС-адресов, а затем принимает решение о коммутации или маршрутизации каждого кадра. Если кадр имеет МАС-адрес назначения, отличный от МАС-адреса порта маршрутизатора, то этот кадр коммутируется. Если устройство поддерживает технику VLAN, то перед передачей кадра проверяется принадлежность адресов назначения и источника одной виртуальной сети.

Если же кадр направлен непосредственно МАС-адресу какого-либо порта маршрутизатора, то он маршрутизируется стандартным образом. Коммутатор 3-го уровня может поддерживать динамические протоколы маршрутизации, такие как, RIP или OSPF, а может полагаться на статическое задание маршрутов или на получение таблицы маршрутизации от другого маршрутизатора.

Такие комбинированные устройства появились сразу после разработки коммутаторов, поддерживающих виртуальные локальные сети (VLAN). Для связи VLAN требовался маршрутизатор. Размещение маршрутизатора в одном корпусе с коммутатором позволяло получить некоторый выигрыш в производительности, например, за счет исключения одного этапа буферизации пакета, когда он передается из коммутатора в маршрутизатор. Хотя такие устройства с равным успехом можно называть маршрутизирующими коммутаторами или коммутирующими маршрутизаторами, за ними закрепилось название коммутаторов 3-го уровня.

Примерами таких коммутаторов могут служить хорошо известные коммутаторы LANplex (теперь CoreBuilder) 6000 и 2500 компании 3Com. В этих устройствах совместно используются специализированные большие интегральные микросхемы (ASIC), RISC- и CISC-процессоры. Микросхемы ASIC обеспечивают коммутацию пакетов и их первичный анализ при маршрутизации, RISC-процессоры выполниют основную работу по маршрутизации, а CISC-процессоры реализуют функции управления. За счет такого распараллеливания процесса функционирования под­систем коммутации и маршрутизации достигается достаточно высокий уровень производительности. Так, система CoreBuilder 2500, имеющая один блок коммута­ции/маршрутизации, способна маршрутизировать 98 тысяч IP-пакетов в секунду (без их потери) на полной скорости каналов связи. Более мощная система CoreBuilder 6000 по данным компании 3Com в конфигурации с 88 портами Fast Ethernet маршрутизирует до 3 миллионов пакетов в секунду.

Более быстродействующей реализацией данного подхода являются устройства, в которых функции маршрутизации перенесены из универсального центрального процессора в специализированные заказные микросхемы портов. При этом ускоре­ние процесса маршрутизации происходит не только за счет распараллеливания работы между несколькими процессорами, но и за счет использования специали­зированных процессоров вместо универсальных процессоров типа Motorola или Intel. Примеры этого подхода — коммутатор CoreBuilder 3500 компании 3Com, маршрутизирующий коммутатор Accelar 1200 компании Nortel Networks.

По данным фирм-производителей, коммутаторы 3-го уровня CoreBuilder 3500 и Accelar 1200 способны маршрутизировать соответственно до 4 и 7 миллионов пакетов в секунду. С такой же скоростью они коммутируют поступающие кадры, что говорит о высокой эффективности реализованных в ASIC алгоритмах маршру­тизации.

Подход, связанный с переносом процедур маршрутизации из программируе­мых процессоров, пусть и специализированных, в работающие по жестким алго­ритмам БИС, имеет один принципиальный недостаток — ему недостает гибкости. При необходимости изменения протокола или набора протоколов требуется перепроектировать БИС, что очевидно подразумевает очень большие затраты времени и средств по сравнению с изменением программного обеспечения маршрутизатора. Поэтому быстродействующие маршрутизаторы переносят в БИС только несколь­ко базовых протоколов сетевого уровня, чаще всего IP и IPX, делая такие маршру­тизаторы узко специализированными.

 

Маршрутизация потоков.

Еще один тип коммутаторов 3-го уровня — это коммутаторы, которые ускоряют процесс маршрутизации за счет выявления устойчивых потоков в сети и обработки в схеме маршрутизации только нескольких первых пакетов потока. Многие фирмы разработали подобные схемы, однако до сих пор они являются нестандартными. Работа над стандартизацией этого подхода идет в рамках одной из рабочих групп IETF. Существуют компании, которые считают эти попытки ошибочными, вносящими ненужную путаницу в и так непростую картину работы стека протоколов сети. Наиболее известной компанией, занявшей такую позицию, является компания Nortel Networks, маршрутизаторы которой Accelar 1200 работают по классической схеме. Тем не менее количество компаний, разработавших протоколы ускоренной Маршрутизации, в основном ускоренной IP-маршрутизации, довольно велико, туда входят такие известные компании, как 3Com, Cisco, Cabletron, Digital, Ipsilon. Поток — это последовательность пакетов, имеющих некоторые общие свойства, по меньшей мере у них должны совпадать адрес отправителя и адрес получателя, и тогда их можно отправлять по одному и тому же маршруту. Желательно, чтобы пакеты потока имели одно и то же требование к качеству обслуживания. Ввиду разнообразия предложенных схем опишем только основную идею, лежащую в их основе.

Если бы все коммутаторы/маршрутизаторы, изображенные на рис. 5.31, работали по классической схеме, то каждый пакет, отправляемый из рабочей станции, принадлежащей одной IP-сети, серверу, принадлежащему другой IP-сети, проходил бы через блоки маршрутизации всех трех устройств. В схеме ускоренной маршрутизации такую обработку проходит только несколько первых пакетов долговременного потока, то есть классическая схема работает до тех пор, пока долговременный поток не будет выявлен.

 

Рис. 5.31. Ускоренная маршрутизация потока пакетов.

 

После этого первый коммутатор на пути следования потока выполняет нестандартную обработку пакета — он помещает в кадр канального протокола, например Ethernet, не МАС-адрес порта следующего маршрутизатора, а МАС-адрес узла на­значения, который на рисунке обозначен как МАСк. Как только эта замена произ­ведена, кадр с таким МАС-адресом перестает поступать на блоки маршрутизации второго и третьего коммутатора/маршрутизатора, а проходит только через блоки коммутации этих устройств. Процесс передачи пакетов действительно ускоряется, так как они не проходят многократно повторяющиеся этапы маршрутизации. В то же время защитные свойства маршрутизаторы сохраняют, так как первые пакеты проверяются на допустимость передачи в сеть назначения, поэтому сохраняются фильтрация широковещательного шторма, защита от несанкционированного дос­тупа и другие преимущества сети, разделенной на подсети.

Для реализации описанной схемы нужно решить несколько проблем. Первая — на основании каких признаков определяется долговременный поток. Это достаточно легкая проблема, и основные подходы к ее решению очевидны — совпадение адресов и портов соединения, общие признаки качества обслуживания, некоторый порог оди­наковых пакетов для фиксации долговременности. Вторая проблема более серьезная. На основании какой информации первый маршрутизатор узнает МАС-адрес узла назначения. Этот узел находится за пределами непосредственно подключенных к первому маршрутизатору сетей, поэтому использование протокола ARP здесь не поможет. Именно здесь расходятся пути большинства фирменных технологий ускорен­ной маршрутизации. Многие компании разработали собственные служебные протоко­лы, с помощью которых маршрутизаторы запрашивают этот МАС-адрес друг у друга, пока последний на пути маршрутизатор не выяснит его с помощью протокола ARP.

Фирменные протоколы используют как распределенный подход, когда все мар­шрутизаторы равны в решении проблемы нахождения МАС-адреса, так и центра­лизованный, когда в сети существует выделенный маршрутизатор, который помогает ее решить для всех.

Примерами коммутаторов 3-го уровня, работающими по схеме ускоренной IP-маршрутизации, являются коммутаторы SmartSwitch компании Cabletron, а также коммутатор Catalyst 5000 компании Cisco, выполняющий свои функции совмест­но с маршрутизаторами Cisco 7500 по технологии Cisco NetFlow.

Выводы

Типичный маршрутизатор представляет собой сложный специализированный компьютер, который работает под управлением специализированной операци­онной системы, оптимизированной для выполнения операций построения таб­лиц маршрутизации и продвижения пакетов на их основе.

Маршрутизатор часто строится по мультипроцессорной схеме, причем исполь­зуется симметричное мультипроцессирование, асимметричное мультипроцес-сирование и их сочетание. Наиболее рутинные операции обработки пакетов выполняются программно специализированными процессорами или аппаратно большими интегральными схемами (БИС/ASIC). Более высокоуровневые дей­ствия выполняют программно универсальные процессоры.

По областям применения маршрутизаторы делятся на: магистральные маршру­тизаторы, маршрутизаторы региональных подразделений, маршрутизаторы уда­ленных офисов и маршрутизаторы локальных сетей — коммутаторы 3-го уровня.

Основными характеристиками маршрутизаторов являются: общая производи­тельность в пакетах в секунду, набор поддерживаемых сетевых протоколов и протоколов маршрутизации, набор поддерживаемых сетевых интерфейсов гло­бальных и локальных сетей.

К числу дополнительных функций маршрутизатора относится одновременная поддержка сразу нескольких сетевых протоколов и нескольких протоколов маршрутизации, возможность приоритетной обработки графика, разделение функций построения таблиц маршрутизации и продвижения пакетов между маршрутизаторами разного класса на основе готовых таблиц маршрутизации.

Основной особенностью коммутаторов 3-го уровня является высокая скорость выполнения операций маршрутизации за счет их перенесения на аппаратный уровень — уровень БИС/ASIC.

Многие фирмы разработали собственные протоколы ускоренной маршрутиза­ции долговременных потоков в локальных сетях, которые маршрутизируют толь­ко несколько первых пакетов потока, а остальны



Последнее изменение этой страницы: 2016-06-29; просмотров: 1395; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 54.227.97.219 (0.015 с.)