Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Ароматические углеводороды (арены)↑ Стр 1 из 4Следующая ⇒ Содержание книги
Поиск на нашем сайте
Электродегидраторы применяются для глубокого обезвоживания и обессоливания нефти.
Под воздействием электрического поля происходит упорядочение движения, а затем столкновение капель воды. Если расстояние между каплями незначительное, а размеры этих капель относительно велики, то сила притяжения становится настолько большой, что бронированные эмульгаторами оболочки этих капель сдавливаются и разрушаются. В результате происходит укрупнение и слияние капель воды и их осаждение.
Свойство капель воды в эмульсиях располагаться вдоль силовых линий электрического поля и было использовано для разрушения эмульсий типа В/Н в аппаратах, называемых электродегидраторами. Эффективность разрушения эмульсий в поле переменного тока значительно выше, чем в поле постоянного тока. В поле переменного тока происходит циклическое изменение направления движения тока и напряженности поля, в результате чего капли воды изменяют направление своего движения синхронно основному полю и поэтому все время находятся в состоянии колебания. Под воздействием сил переменного электрического поля форма капель постоянно меняется, в связи с чем капли воды испытывают непрерывную деформацию, что способствует разрушению адсорбированных на каплях воды оболочек и их слиянию. В электродегидраторах используется переменный ток промышленной частоты (50 герц) В электрическом поле электродегидраторов происходит не только разделение эмульсии на нефть и воду, но и отделение солей, содержащихся в этих водах. Последнее связано с проявлением гальванического процесса в электрическом поле напряженности электродегидраторов. В целом электродегидраторы из-за наличия двойного эффекта получили распространение как электрообезвоживаю- щие и электрообессоливающие установки и имеют другое распространенное название ЭЛОУ. Опыт работы показал, что наиболее эффективными и экономичными являются горизонтальные электродегидраторы. Нагретая нефтяная эмульсия, содержащая деэмульгатор и до 5—10% пресной воды, поступает через два распределителя эмульсии 6, изготовленных из перфорированных труб,под слой отделившейся воды и поднимается вверх. В корпус вмонтированы два электрода 1 в форме решетчатых прямоугольных рам, подвешенных через подвесные проходные
изоляторы параллельно друг другу и занимающих почти все горизонтальное сечение аппарата. Расстояние между электродами может изменяться от 20 до 40 см. После перехода через границу раздела вода-нефть нефтяная эмульсия попадает сначала в зону электрического поля низкой напряженности, образующуюся между нижним электродом и поверхностью отделившейся воды, а затем в зону высокой напряженности между верхним и нижним электродами (Напряжение между электродами может составлять 11,33 и 44 кВ.). Под действием электрического поля капли воды, содержащиеся в нефти, поляризуются, взаимно притягиваются друг к другу, коалесцируют и осаждаются. Обезвоженная и обессоленная нефть выводится сверху аппарата через сборник нефти 2, а отделившаяся вода — снизу.
1 - электроды; 2 - сборник нефти; 3 - подвесные изоляторы; 4 – реактивная катушка; 5 - трансформатор; 6 - распределитель эмульсии;
Циклоалканы Простейшими представителями являются моноциклические углеводороды, общая формула которых СnН2n. Циклоалканы в зависимости от числа атомов углерода в цикле подразделяют на малые циклы (С3 и С4), средние (С5 –С7) и большие циклы (С8 и больше). Структуру циклоалканов представляют в виде многоугольников, в которых атомы углерода и водорода обычно не изображают. Изомерия и номенклатура. Структурная изомерия циклоалканов возможна по нескольким признакам: размеру цикла, размеру и числу заместителей в цикле, взаимному положению заместителей. Пропан не имеет изомеров, циклобутан имеет два изомера, циклопентан – пять, ниже представлены структурные изомеры состава С6Н12, в соответствии с признаками изомерии: а) по размеру цикла:
циклогексан метилцикло- этилциклобутан пропилцикло пентан пропан
б) по размеру и числу заместителей:
1,2,3-триметил- 1-метил-2-этил- 1-метил-2-этил- изопропил- циклопропан циклопропан циклопропан циклопропан в) по взаимному расположению заместителей:
1,1-диметилбутан 1,2-диметилбутан 1,3-диметилбутан Физические свойства. При обычных условиях только циклопропан и циклобутан являются газообразными веществами.Циклоалканы обычно имеют более высокую температуру кипения и плавления по сравнению с аналогичными соединениями алканов, например: циклопропан (tкип.=-126,9оС; tпл.=-33оС) и пропан (tкип.=-187,1оС; tпл.=-42,2оС).
Химические свойства Реакционная способность циклоалканов в значительной степени зависит от устойчивости цикла. Реакции могут протекать по трем направлениям: замещения (SR); присоединения (AE или AR), которые сопровождаются раскрытием цикла; реакции изомеризации (сужение или расширение) циклов. Склонность к типу реакции определяется прочностью цикла: С3 – С4 склонны к реакциям присоединения, С5 – С6 склонны к реакциям замещения. Циклопентан и циклогексан по своим химическим свойствам наиболее близки с алканами. Они подвергаются радикальному галогенированию, нитрованию, сульфохлорированию, устойчивы к действию окислителей. Гидрогалогенирование характерно только для циклопропана при действии галогеноводородов в водном растворе, реакция протекает с разрывом цикла и образованием 1-иодпропана:
Галогенирование циклопропа и его гомологов может протекать как с разрывом цикла, так и с сохранением его по типу замещения. Бромирование на свету приводит к образованию 1,3-дибромпропана, как хлорирование при температуре больше 100оС. В тоже время при меньшей температуре реакция хлорирования протекает по типу замещения:
Циклоалканы состава С4 – С6 галогенируются по типу радикального замещения, например хлорирование по схеме:
Гидрирование циклоалканов с увеличением размера цикла протекает в более жестких условиях, с использованием температуры и катализатора:
Изомеризация циклов характерна для гомологов и их производных, например, галогенопроизводных, спиртов, аминов. В зависимости от структуры субстрата во время реакции происходит изменение размера цикла в сторону увеличения (а, б) или уменьшения (в): а) метилциклопентан циклогексан б) 1,2-диметилцикло- метилцикло- циклогексан бутан пентан в) циклогептан метилциклогексан
Окисление малых циклов С3 – С4 концентрированной азотной кислотой или кислородом (в присутствии катализатора) ведет к раскрытию цикла с образованием дикарбоновых кислот, при этом малые циклы устойчивы к действию раствора перманганата калия.
Лишь в жестких условиях циклопентан и циклогексан окисляются в соответствующие циклические спирты или кетоны (а), а если реакция идет с разрывом цикла - в дикарбоновые кислоты (б)
а)
б) циклопентан пентандиовая кислота
Исторически неорганическая теория возникла раньше органической. До середины XIX в. нефть использовалась там, где имелись её выходы на поверхности – в Средиземноморье, в Калифорнии, Венесуэле и др. Ряд ученых того времени, например немецкий естествоиспытатель А.Гумбольдт, связал образование нефти и асфальта с вулканами. Во второй половине XIX в. химикам удалось в лабораторных условиях синтезировать ацетилен С2Н2, углеводороды метанового ряда. Знаменитый химик Д.И.Менделеев создал свою известную «карбидную» теорию происхождения нефти и выступил на заседании Русского химического общества в 1877 г., причем его гипотеза была обоснована на большом фактическом материале и сразу же завоевала популярность. Менделеев указал, что открытые к тому времени месторождения нефти сконцентрированы в окраинах горно-складчатых сооружений, линейно вытянуты, тяготеют к зонам крупных разломов. Через эти разломы вода проникает вглубь Земли, вступает в реакцию с углеродистыми металлами – с карбидами металлов, в результате чего возникает нефть, которая поднимается вверх, образует залежи:
2FeC+3H2O=Fe2O3+C2H6 Этот процесс, по Менделееву, происходил не только в прошлые геологические периоды, но и происходит сейчас. Карбидную теорию критиковал академик И.М.Губкин. Для карбидного варианта происхождения нефти необходимо существование проводящих путей воды к жидким карбидам и обратно, из очагов генерации к местам скопления нефти и газа. Губкин показал невозможность существования подобных трещин – проводящих путей от ядра Земли к верхней твердой оболочке. Препятствием является, по Губкину, пластичный базальтовый пояс, затрудняющий как проникновение воды вниз, так и обратный восходящий поток нефти и газа. Кроме того, в качестве аргумента против карбидной теории Губкин ссылался на тот факт, что образованные неорганическим путем нефти оптически неактивны, в то время как природная нефть оптически активна, способна вращать плоскость поляризации светового луча. Кроме карбидной известна космическая теория происхождения нефти. Автор этой теории русский геолог Н.А.Соколов выдвинул её в 1892 г. Он считал, что углеводороды изначально существовали в первозданном веществе Земли или образовались на ранних высокотемпературных стадиях её образования. С охлаждением Земли нефть поглощалась и растворялась в жидкой расплавленной магме. Впоследствии, когда возникла земная кора, из магмы выделились углеводороды, которые по трещинам в земной коре поднимались в верхние части, сгущались и там образовали скопления. Н.А.Соколов в качестве аргумента своей теории принял факты обнаружения углеводородов в метеоритах. Академик Губкин, критикуя эту теорию, написал, что она основана лишь на теоретических рассуждениях и не подтверждается геологическими наблюдениями. Губкин считал, что в природе в очень небольших количествах можно допускать образование нефти неорганическим путем, но это не имеет практического значения, основная масса скоплений нефти имеет все-таки органическое происхождение.
Органическая гипотеза
Химические свойства Арены относятся к высоко ненасыщенным соединениям, однако для них не характерны реакции электрофильного присоединения, свойственные алкенам и алкинам: бензол не обесцвечивает бромную воду и раствор перманганата калия.
Устойчивость аренов объясняется наличием высокой энергии сопряжения ароматической системы бензольного кольца. Для молекулы бензола энергия сопряжения равна 150 кДж/моль, нафталина - 250 кДж/моль, арнтрацена - 359 кДж/моль. В указанном ряду энергия сопряжения уменьшается (в расчете на одно бензольное кольцо), следовательно, уменьшается устойчивость молекулы и повышается его химическая активность. Арены предпочтительно вступают в реакции электрофильного замещения, в результате которого сохраняется ароматичность бензольного кольца. Реакции галогенирования, нитрования, сульфирования возможны со всеми аренами при действии различных электрофильных реагентов. Реакции алкилирования, ацилирования осуществляются только с соединениями, не содержащими электроноакцепторные заместители в кольце.
Реакции замещения Электрофильное замещение в бензоле представлено схемами синтеза гомологов бензола (а) и его производных (б). а) Синтез гомологов бензола: б) Синтез производных бензола: Галогенирование. Бензол в обычных условиях не взаимодействует с хлором и бромом. Реакция протекает только в присутствии катализаторов, которыми чаще всего являются галогениды алюминия, железа (кислоты Льюиса). Нитрование. Бензол нитруется смесью концентрированных азотной и серной кислот (нитрующая смесь) при нагревании до 60оС с образованием нитробензола. Сульфирование. При взаимодействии бензола с концентрированной кислотой или олеумом (смесь концентрированной серной кислоты и серного ангидрида – SO3) образуется бензолсульфоновая кислота. Ацилирование представляет собой один из методов синтеза ароматических кетонов. В качестве ацилирующих реагентов используют хлорангидриды кислот (RCOCI) или ангидриды кислот (RCO-O-OCR). Реакцию проводят в неполярном растворителе в присутствии хлорида алюминия. Алкилирование является одним из способов получения гомологов бензола. В качестве алкилирующих реагентов можно использовать галогеналканы, спирты и алкены в присутствии галогенидов металлов (алюминия, железа, олова и др.). Замещения в бензоле В производных бензола и его гомологов заместители нарушают равномерное распределение электронной плотности и тем самым, определенным образом, влияют на реакционную способность и направление атаки в бензольном кольце. Ориентирующее влияние заместителей, обусловленое суммарным действием их электронных эффектов (см. 2.5; табл.2.2), рассмотрим на примере фенола и нитробензола. В молекуле фенола заместитель (- ОН) проявляет отрицательнй индуктивный (- I) и положительный мезомерный (+ M) электронные эффекты, последний является преобладающим в суммарном электронодонорном (ЭД) действии (а). Электронный эффект ЭД заместителя приводит к перераспределению электронной плотности в кольце повышая ее в орто - и пара – положениях, в которых облегчается атака электрофильными реагентами. В молекуле нитробензола заместитель (-NO2) проявляет отрицательнй индуктивный (- I) и отрицательный мезомерный (+ M) электронные эффекты, что проявляется в суммарном электроноакцепторном (ЭА) действии (б). Электронный эффект ЭА заместителя приводит к перераспределению электронной плотности в кольце, понижая ее в орто - и пара – положениях, в которых затрудняется атака электрофильными реагентами.
а) б)
фенол нитробензол Правила замещения: 1) Электронодонорные заместители (ЭД) повышают электронную плотность кольца и тем самым увеличивают скорость реакции электрофильного замещения. К заместителям, проявляющим ЭД характер, относятся группы: - NH2, - OH, - OR, - R, которые ориентируют электрофильное замещение в орто - и пара - положение. Исключение составляют галогены, которые направляют электрофильную частицу предпочтительно в пара - положение. 2) Электроноакцепторные заместители (ЭА) понижают электронную плотность кольца и тем самым уменьшают скорость реакции электрофильного замещения. К заместителям, проявляющим ЭА характер, относятся группы: - NO2, - COOH, - SO3H, >C=O и др., которые ориентируют электрофильное замещение в мета - положение, затрудняя его. Правила замещения можно продемонстрировать на реакции нитрования бензола (а) и его производных, содержащих электронодонорный (б) и электроноакцепторный (в) заместители. В представленных схемах реакций отражены условия и выход продукта реакции (в %), отражающий активность ориентирующего влияния заместителя в орто -, мета - или пара – положения. Как правило, в уравнении реакции указывают то направление электрофильной атаки, которое более предпочтительно в данных условиях реакции:
а) нитрование бензола:
нитробензол
б) нитрование фенола:
орто -нитро- пара -нитро- пикриновая фенол фенол кислота
в) нитрование нитробензола:
мета -динитробензол
Электронные эффекты заместителей позволяют расположить приведенные соединения в следующий ряд по снижению активности в реакции нитрования: фенол, бензол и нитробензол. Если в бензольном кольце заместителей больше, чем один, то их ориентирующее влияние может быть согласованным или несогласованным, в зависимости от их типа и взаимного расположения. Примером согласованной ориентации может служить реакция нитрования орто - нитрофенола и пара - нитрофенола до пикриновой кислоты (реакция б). В данном случае оба заместителя (электронодонорный – ОН, электроноакцепторный – NO2) согласованно ориентируют последующее электрофильное замещение в орто - и пара - положения по отношению к гидроксильной группе. Ориентирующее влияние ЭД заместителя является определяющим в реакции электрофильного замещения, в случае его несогласованного ориентирующего действия с ЭА заместителем. Правила ориентирующего влияния заместителей используют для целенаправленного синтеза, включающего несколько последовательных реакций. Например, чтобы получить из толуола орто -, мета - и пара - нитробензойные кислоты необходимо в определенной последовательности провести реакции нитрования и окисления.
Метильная группа (- СН3) относится к электронодонорным заместителям, соответственно по правилам ориентирующего влияния направляет электрофильное замещение в орто - и пара - положения (а). Карбоксильная группа (- СООН) является электроноакцепторным заместителем, соответственно по правилам ориентирующего влияния направляет электрофильное замещение в мета - положение (б). Таким образом, чтобы получить из толуола все изомеры нитробензойной кислоты необходимо провести синтез в соответствии со схемами реакций, представленными ниже. а) Схема синтеза орто - и пара - изомеров нитробензойной кислоты предполагает первоначально провести реакцию нитрования, а затем – окисления:
б) Схема синтеза мета – изомера нитробензойной кислоты предполагает первоначально провести реакцию окисления, а затем – нитрования:
Конденсированных аренов Реакции электрофильного замещения в нафталине протекают в более мягких условиях, предпочтительно по 1 – положению (или α-), повышение температуры реакции приводит к образованию продукта замещения водорода во 2 – положение (или b-). Галогенирование нафталина осуществляется в присутствии галогенидов металлов при температуре 20-40оС.
1-бромнафталин 2-бромнафталин (99%) (1%)
б) Нафталин нитруется азотной кислотой в уксусном ангидриде при слабом нагревании или нитрующей смесью при комнатной температуре, повышение температуре способствует образованию более устойчивого b - продукта.
1-нитронафталин 2-нитронафталин
в) Сульфирование нафталина является примером термодинамически контролируемой реакции. Действие безводной концентрированной серной кислоты при 80оС приводит к образованию нафталин-1-сульфоновой кислоты, а повышение температуры до 160оС – нафталин-2-сульфоновая кислота:
г) Ацилирование нафталина хлористым ацетилом при 0оС приводит к образованию предпочтительно 1- ацетилнафталина, выше 30оС – 2- ацетилнафталина:
Реакции присоединения для нафталина протекают в более мягких условиях в сравнении с бензолом. Например, гидрирование по одному бензольному кольцу возможно при действии водорода в момент выделения, в условиях каталитического гидрирования нафталин превращается в насыщенный декагидронафталин (тетралин).
тетралин декалин
Окисление нафталина протекает легче, чем бензола. В более мягких условиях окисления образуется нафтахинон-1,4, при действии сильного окислителя – происходит разрушение одного из колец с образованием дикарбоновой кислоты по схеме:
Отдельные представители Бензол ( С6Н6) - жидкость с характерным запахом, почти нерастворимая в воде. Получают бензол при сухой перегонке каменного угля и переработки нефти. Широко используется в промышленности в качестве растворителя и сырья для синтеза красителей, полимеров, взрывчатых веществ, поверхностно - активных веществ. Бензол токсичен, вдыхание паров вызывает острое отравление, приступы головокружения, судороги. В организме углеводороды подвергаются С - гидроксилированию (окисление с ообразованием гидроксисоединений) и выводятся из клетки. Однако бензол окисляется очень медленно, поэтому накапливается в организме и относится к кумулятивным ядам. Толуол (метилбензол) - бесцветная жидкость, нерастворимая в воде. Применяют для получения бензола, бензойной кислоты, сахарина, взрывчатых веществ, лаков. Толуол добавляют к моторному топливу как высокооктановый компонент бензинов. Толуол примерно на два порядка мене токсичен, чем бензол, так как окисляется в организме до бензойной кислоты и быстрее выводится из клетки. Кумол (изопропилбензол) - жидкость, является важным продуктом для синтеза фенола и ацетона кумольным способом. Цимол (пара -метилизопропилбензол) - является основой многих эфирных масел. Стирол (винилбензол) - приятно пахнущая жидкость, исходный мономер для получения полимеров, например, полистирола, который применяют в качестве электроизоляционного материала. При сополимеризации с бутадиеном получают некоторые виды синтетических каучуков. Полистирольные полимеры, содержащие функциональные группы кислого или основного характера, используют в качестве ионообменных смол. Ксилолы (диметилбензолы) используют в качестве компонента высокооктановых бензинов и растворителей в лакокрасочной промышленности, а так же применяют для получения полиэфиров. Нафталин - бесцветные пластинки, обладающие высокой летучестью (возгонка) и характерным запахом. Используется для получения фталевого ангидрида, фталевой кислоты, растворителей (тетралин и декалин) и разнообразных других производных. Антрацен - твердое вещество, в виде антрахинона используется в синтезе антрахиноновых красителей. Фенантрен в частично или полностью гидрированном состоянии входит в состав стероидных гормонов, алкалоидов как основной структурный компонент.
Сернистые соединения нефти
Сера является наиболее распространенным гетероэлементом в нефти и нефтепродуктах. Содержание ее в нефтях месторождений России изменяется от 0,05% до 3%. Таблица 26 Содержание серы в нефтях некоторых месторождений
В соответствии с технологической классификацией в зависимости от содержания серы нефти подразделяются на три класса: I- малосернистые, содержание до 0,5% серы; II- сернистые, содержание до 0,51 -2,0% серы; III- высокосернистые, содержащие более 2,0% серы. С повышением температуры кипения нефтяных фракций содержание в них серы увеличивается. До 60% всей серы нефти содержится во фракциях топлив и масел (выкипающих до 4500С), 40% и более в мазуте. Распределение серы по фракциям иллюстрируется данными таблицы 27. Таблица 27
Распределение серы (в масс. %) по фракциям различных сернистых и высокосернистых нефтей
Распределение серы по фракциям зависти от природы сернистых соединений.
Характеристика сернистых соединений нефти Сера в нефти и нефтепродуктах может содержаться в виде неорганических соединений серы: элементная сера и сероводород и органических: меркаптаны, сульфиды, дисульфиды, тиофены, тиофаны. Значительная часть серы нефти входит в состав смолисто-асфальтеновых веществ, это не идентифицированная сера. Элементная сера и сероводород в сырых нефтях содержатся в незначительных количествах или не содержатся совсем. Они появляются в нефтях или в нефтяных фракциях в результате вторичных реакций. Сера может получаться при окислении сероводорода кислородом воздуха.
Или при термическом разложении дисульфидов В свою очередь, дисульфиды образуются при окислении меркаптанов Сероводород обычно образуется в процессах переработки нефти в результате термического разложения меркаптанов и сульфидов или при реакции углеводородов с серой. Б.Н.Айвазовым как критерий термической стабильности сернистых соединений было предложении сероводородное число – количество Н2S(в мг), выделяющегося при нагревании 100 г нефти при 3000С в течение часа. Сероводородное число не связано с общим содержанием серы, так как, оно изменялось от 4,2 до 300,6 при изменении содержания серы от 0,7 до 30,3%. Оно связано с термической стабильностью сернистых соединений, что важно в процессах переработки нефти. Качественно сера и сероводород обнаруживаются по реакции
Меркаптаны RSH, или тиоспирты,или тиолы. Называюся про радикалу с добавлением слова меркаптан или тиол. Радикалы могут быть любые: алифатические, нафтеновые, ароматические: изопропилмеркаптан
2-метил-циклогексилмеркаптан
фенилмеркаптан или тиофен
В виде меркаптанов сравнительно немного серы нефти – от 1 до 15% от всей серы нефти.Однако известны исключения из этой закономерности. Так нефть Марковского месторождения (Иркутская область) при общем содержании серы 0,96% содержит 0,77% меркаптановой серы; фракция 40-2000С газоконденсата Оренбургского месторождения содержит 1,24% общей серы, в том числе 0,297% меркаптановой. В наибольшем количестве меркаптаны содержатся в бензиновой фракции, с повышением температуры кипения их содержание быстро уменьшается; это связано с их низкой термической стабильностью. До 3000С меркаптаны разлагаются с образованием сульфидов.
При более высоких температурах - до олефинов
Сероводород может вновь присоединиться к олефину Интересной особенностью алкилтиолов бензиновых фракций является то, что SH- группа чаще находится при вторичном или третичном атоме углерода, чем при первичном, что свидетельствует об их вторичном происхождении. По увеличении термической стабильности меркаптаны располагаются в ряд: первичные, вторичные, третичные, ароматические. Слабыми окислителями (кислород воздуха, иод)меркаптаны окисляются до дисульфидов. Сильными окислителями (азотная кислота, гидроперекиси(образующиеся при окислении углеводородов)) - до сульфокислот и даже до серной кислоты. Образованием кислот, более агрессивных, чем меркаптаны, объясняется высокая коррозионная активность меркаптанов. С другой стороны, разрушая гидроперекиси, меркаптаны тормозят окисление углеводородов. Будучи, и обладая кислотными свойствами, меркаптаны взаимодействуют со щелочами, оксидами и солями металлов. Промывка бензинов водно-щелочным раствором едкого натра (спирт добавляется для снижения гидролиза меркаптида натрия) используется для демеркаптанизации бензинов. Реакция с PbO является качественной реакцией на меркаптаны(докторская проба), после удаления Н2S. Образование черного осадка PbS свидетельствует о наличии меркаптанов. Реакция с AgNO3 используется для количественного определения меркаптанов (титрованием) после удаления сероводорода. Соли образованные меркаптанами, называютмя меркаптидами с добавлением названия радикала (метилмеркаптид калия, бутилмеркаптид свинца) и т.д. В настоящее время выделено более 50 различных меркаптанов с числом углеродных атомов от 1 до9; из них более 40 алкилтиолов, 6 циклоалкилтиолов и тиофенол. Все меркаптаны имеют неприятный запах,низшие используются для одорации природного газа. Сульфиды или тиоэфиры подразделяются на алифатические (диалкилсульфиды) и алициклические (тиацикланы), содержащие атом серы в цикле. Алифатические называются по названию радикалов: диметилсульфид Метилфенилсульфид
Циклические сульфиды называются как углеводороды с тем же числом углеродных атомов, включая серу, с добавлением приставки тиа:
Тиациклопентан
Тиациклогексан Или по количеству метиленовых групп –СН2, связанных через атом серы: тетраметиленсульфид, пентаметиленсульфид Сульфида содержатся в бензиновых и в основном в средних фракциях нефти, где они могут составлять более половины всех сернистых соединений. В бензиновых фракциях содержатся в основном диалкилсульфиды, в керосино-газойлевых и масляных фракциях – в основном циклические сульфиды. Таблица 28 Групповой состав сульфидов различных нефтей
Из таблицы видно, что большая часть сульфидов в керосино-газойлевых фракциях представлена циклическими (в основном моно- и бициклическими) сульфидами,в небольших количествах тиациклановое кольцо сконденсированос ароматическим. С повышением температуры кипения фракции доля таких соединений увеличивается. Количество диалкилсульфидов (тиацикланов) снижается с повышением температуры кипения фракции; выше 3000С они практически отсутствуют. Углеводородные радикалы, содержащие три и более атомов углерода, обычно связаны с серой по вторичному углеродному атому. Выделено более 50 тиаалканов, в т.ч. все изомеры С2-С6.Алкилциклоакилсульфиды и алкиларилсульфиды изучены в меньшей степени. В тиацикланах цикл, содержащий атом серы, может входить в полициклическую систему,содержащую до семи колец. Атом серы чаще входит в пятичленный цикл (тиациклопентан) –на 60-70% и в 30-40
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-06-28; просмотров: 705; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.142.198.148 (0.023 с.) |