Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Краткий перечень основных понятий теории графовСодержание книги Поиск на нашем сайте
Общие понятия Графы помогают описывать и исследовать различные системы объектов и их связи. Например, в графе, изображенном на рис. 1, точки (вершины графа) можно интерпретировать как города, а линии, соединяющие вершины (ребра), как дороги, соединяющие эти города.
Рис. 1.
Формальное определение графа таково [1-8]. Графом Г=(V, X) называется пара множеств: V – множество, элементы которого называются вершинами, X – множество неупорядоченных пар вершин, называемых ребрами. Если v, w Î V, x=(v,w)ÎX, то говорят, что ребро x соединяет вершины v и w или x инцидентно v и w. Таким образом, {v,w} – обозначение ребра. Если Х представляет собой упорядоченные пары (т. Е. X – подмножество декартова произведения V×V), то граф называется ориентированным, а пары {v,w} называют дугами. Если множеству X принадлежат пары v = w, то такие ребра (v, v) называют петлями. Существование одинаковых пар {v,w} соответствует наличию параллельных или кратных ребер (дуг), а кратностью ребер называют количество таких одинаковых пар. Например, кратность ребра { v 1,v2} в графе, изображенном на рис. 2, равна двум, кратность ребра { v 3,v4} − трем. Рис.2.
Псевдограф − граф, в котором есть петли и/или кратные ребра. Мультиграф − псевдограф без петель.
Заметим, что графом также называют мультиграф, в котором ни одна пара не встречается более одного раза. Итак, используемые далее обозначения: V – множество вершин; X – множество ребер или дуг; v (или vi)– вершина или номер вершины; G, G 0 – неориентированный граф; D, D 0 – ориентированный; { v, w } − ребра неориентированного графа; { v, v } – обозначение петли; (v, w) − дуги в ориентированном графе; v, w – вершины, x, y, z – дуги и ребра; n (G), n (D) количество вершин графа; m (G) – количество ребер, m (D) – количество дуг. Примеры 1) Ориентированный граф D =(V, X), V ={ v 1, v 2, v 3, v 4}, X ={ x 1=(v 1, v 2), x 2=(v 1, v 2), x 3=(v 2, v 2), x 4=(v 2, v 3)}.
Рис. 3.
2) Неориентированный граф, изображенный на рис. 4: G =(V, X), V ={ v 1, v 2, v 3, v 4, v 5}, X ={ x 1={ v 1, v 2}, x 2={ v 2, v 3}, x 3={ v 2, v 4}, x 4={ v 3, v 4}}.
Рис. 4.
Понятия смежности, инцидентности, степени Если x ={ v, w } - ребро, то v и w − концы ребра x. Если x =(v, w) - дуга ориентированного графа, то v − начало, w – конец дуги. Вершина v и ребро x неориентированного графа (дуга x ориентированного графа) называются инцидентными, если v является концом ребра x (началом или концом дуги x). Вершины v, w называются смежными, если { v, w }Î X. Степенью вершины v графа G называется число d(v) ребер графа G, инцидентных вершине v. Вершина графа, имеющая степень 0 называется изолированной, а степень 1 – висячей. Полустепенью исхода (захода) вершины v ориентированного графа D называется число d+(v) (d-(v)) дуг ориентированного графа D, исходящих из v (заходящих в v). Следует заметить, что в случае ориентированного псевдографа вклад каждой петли инцидентной вершине v равен 1 как в d+(v), так и в d-(v).
Маршруты и пути Последовательность v 1 x 1 v 2 x 2 v 3… x k v k+1, (где k ³1, v iÎ V, i =1,…, k +1, x iÎ X, j =1,…, k), в которой чередуются вершины и ребра (дуги) и для каждого j =1,…, k ребро (дуга) x j имеет вид { vj, vj +1} (для ориентированного графа (vj, vj +1)), называется маршрутом, соединяющим вершины v 1 и vk +1 (путем из v 1 в vk +1).
Пример В графе, изображенном на рис.4, v 1 x 1 v 2 x 2 v 3 x 4 v 4 x 3 v 2 – маршрут, v 2 x 2 v 3 x 4 v 4 – подмаршрут; маршрут можно восстановить и по такой записи x 1 x 2 x 4 x 3; если кратности ребер (дуг) равны 1, можно записать и так v 1 v 2 v 3 v 4 v 2.
Цепь − незамкнутый маршрут (путь), в котором все ребра (дуги) попарно различны. Цикл − замкнутая цепь (в неориентированном графе). Контур − замкнутый путь (в ориентированном графе). Простой путь (цепь) − путь (цепь, цикл, контур), в котором ни одна дуга/ребро не встречается дважды. Простой цикл (контур) − цикл (контур), в котором все вершины попарно различны. Гамильтонова цепь (путь, цикл, контур) − простая цепь (путь, цикл, контур), проходящая через все вершины. Эйлерова цепь (путь, цикл, контур) − цепь (путь, цикл, контур), содержащая все ребра (дуги) графа по одному разу. Длина маршрута (пути) − число ребер в маршруте (дуг в пути). Утверждение 1. Для того чтобы связный псевдограф G обладал Эйлеровым циклом, необходимо и достаточно, чтобы степени всех его вершин были четными. Утверждение 2. Для того чтобы связный псевдограф G обладал Эйлеровой цепью, необходимо и достаточно, чтобы он имел ровно 2 вершины нечетной степени.
|
||||
Последнее изменение этой страницы: 2016-06-28; просмотров: 331; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.224.44.207 (0.008 с.) |