Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Хромосомные мутации, их значение в определении наследственной патологии. Значение цитогенетического метода. Пренатальная диагностика.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Цитогенетический метод основан на микроскопическом изучении хромосом в клетках человека. Материалом изучения служат клетки человека, получаемые из разных тканей (кровь, костный мозг, клетки опухолей и т.д.). непременным требованием для изучения является наличие делящихся клеток. Чаще всего используют лимфоциты переферической крови, которые с помощью специальной обработки возвращаются в митотический цикл. Для накопления делящихся клетов в стадии метафазы с максимально спирализованными хромосомами использую колхицин. Он разрушает веретено деления и препятствует расхождению хроматид. Применение цитогенетического метода позволяет не только изучать нормальную мрфологию хромосам, но и диагностировать различные хромосомные болезни, связанные с нарушением числа хромосом или их струтуры. Этот метод позволяет изучать процессы мутагенеза на уровне хромосом и кариотипа. Применение этого метода в медико-генетическом консультировании дает возможность предупредить появление потомства с грубыми нарушениями развития.
26. Хромосомная теория наследственности. Построение генетических карт хромосом.
Хромосомные карты получают, окрашивая хромосому в метафазе. Получают окрашенные темные и светлые участки, которые соответствуют определенным генам. Генетические карты человека используются в медицине при диагностике ряда тяжелых наследственных заболеваний человека. 2 7. геномный уровень организации наследственного материала. Кариотип, его характеристика. Методы изучения кариотипа. Геном- вся совокупность наследственного материала, заключенного в гаплоидном наборе хромосом. Геном видоспецифичен, так как представляет собой тот необходимый набор генов, который обеспечивает формирование видовых характеристик организмов в ходе их нормального онтогенеза. При половом размножении в процессе оплодотворения объединяются геномы двух родительских клеток, образуя генотип нового организма. Все соматические клетки такого организма обладают двойным набором генов, полученных от обоих родителей в виде определенных аллелей. То есть генотип – это генетическая система, представляющая собой совокупность всех наследственных задатков его клеток, заключенных в их хромосомном наборе – кариотипе.
Кариотип – диплоидный набор хромосом, свойственный соматическим клеткам организмов данного вида, являющийся видоспецифичеким признаком и характеризующийся определенным числом, строением и генетическим составом хромосом. Если число хромосом в гаплоидном наборе половых клеток обозначить n, то общая формула кариотипа будет выглядеть как 2n, где значение n различно у разных видов. Каждый вид хромосом в кариотипе, содержащий определенный комплекс генов, представлен двумя гомологами, унаследованными от родителей с их половыми клетками. Двойной набор генов, заключенный в кариотипе, - генотип – это уникальное сочетание парных аллелей генома. В генотипе содержится программа развития конкретной особи. Для изучения кариотипа используют цитогенетический метод. Цитогенетический метод основан на микроскопическом изучении хромосом в клетках человека. Материалом изучения служат клетки человека, получаемые из разных тканей (кровь, костный мозг, клетки опухолей и т.д.). непременным требованием для изучения является наличие делящихся клеток. Чаще всего используют лимфоциты периферической крови, которые с помощью специальной обработки возвращаются в митотический цикл. Для накопления делящихся клеток в стадии метафазы с максимально спирализованными хромосомами использую колхицин. Он разрушает веретено деления и препятствует расхождению хроматид. Применение цитогенетического метода позволяет не только изучать нормальную морфологию хромосом, но и диагностировать различные хромосомные болезни, связанные с нарушением числа хромосом или их структуры. Этот метод позволяет изучать процессы мутагенеза на уровне хромосом и кариотипа. Применение этого метода в медико-генетическом консультировании дает возможность предупредить появление потомства с грубыми нарушениями развития. 28. митотический цикл как механизм поддержания постоянства кариотипа в ряду поколений клеток. Полиплоидия. Патология митоза. Соматические мутации. Биологическое значение митотического цикла состоит в том, что он обеспечивает преемственность хромосом в ряду клеточных поколений, образование клеток, равноценных по объему и содержанию наследственной информации. Таким образом, митотический цикл является всеобщим механизмом воспроизведения клеточной организации эукариотического типа в индивидуальном развитии.
На основе митотического цикла возник ряд механизмов, с помощью которых в том или ином органе количество генетического материала и интенсивность обмена веществ могут быть увеличены при сохранении постоянства числа клеток. Удвоение ДНК клетки не всегда сопровождается ее разделением надвое. Поскольку механизм такого удвоения совпадает с предмитотической редупликацией ДНК, и оно сопровождается кратным увеличением числа хромосом, это явление получило название эндомитоза. Другое явление заключается в кратном увеличении содержания ДНК в хромосомах при сохранении их диплоидного количества - политения. Эндомитоз и политения приводят к образованию полиплоидных клеток, отличающихся кратным увеличением объема наследственной информации. В таких клетках в отличие от диплоидных гены повторены более, чем 2 раза. Пропорционально увеличению числа генов растет масса клетки Э что повышает ее функциональные возможности. В организме человека с возрастом полиплоидизация свойственна печеночным клеткам.
29. мейоз и оплодотворение как механизмы поддержания постоянства кариотипа. Патологии мейоза. Генеративные хромосомные и геномные мутации. Цитоплазматиечская наследственность. При мейозе из клеток с диплоидным набором 2n хромосом образуются клетки с гаплоидным набором n. Такой результат достигается потому, что после однократного удвоения ДНК клетка делится дважды. В первом мейотическом делении в результате конъюгации гомологичные хромосомы объединятся в биваленты. Последующее расхождение гомологов к разным полюсам веретена деления приводит к образованию клеток с гаплоидным набором хромосом: 2n4с=>n2с. В ходе второго мейотического деления сестринские хроматиды каждой хромосомы распределяются между дочерними клетками с наследственным материалом nс. Благодаря таким особенностям мейоза образуются клетки с гаплоидным набором хромосом. При оплодотворении сперматозоиды проникают в яйцеклетку, вводят в нее свой ядерный наследственный материал, заключенный в гаплоидном наборе хромосом. Ядра гамет сливаются и формируют диплоидное ядро зиготы. Таким образом, мейоз и последующее оплодотворение обеспечивают сохранение у нового поколения организмов диплоидного кариотипа, присущего всем особям данного вида. Патологии мейоза: геномные мутации – это изменения соотношения различных генов и изменение соотношений групп сцепления внутри генома. Нарушение структуры генома, выражающееся в изменении количества отдельных хромосом, называют анеуплоидией. Увеличение в кариотипе зиготы числа наборов хромосом называют полиплоидией. Любые мутационные изменения в наследственном материале гамет – генеративные мутации – передаются следующим поколениям, если такие гаметы участвуют в оплодотворении. Причинами генеративных и геномных мутаций являются различные отклонения во время мейоза: -нарушение кроссинговера: приводит к обмену неравноценными участками ДНК между хроматидами -нарушение расхождения бивалентов в анафазе1: приводит к изменению количества хромосом в гаплоидном наборе гамет -нарушение механизма расхождения гомологичных хромосом между полюсами: клетка остается не разделившейся, это приводит к образованию триплоидных организмов.
Цитоплазматическая наследственность: наличие некоторого количества наследственного материала в цитоплазме убеждает нас в их участии в формировании фенотипа в процессе индивидуального развития. Цитоплазматические гены не подчиняются менделевским законам наследования. В связи с тем, что организм, образуемый вследствие оплодотворения, получает цитоплазматические структуры главным образом с яйцеклеткой, цитоплазматическое наследование осуществляется по материнской линии. Примером цитоплазматического наследования могут служить некоторые патологические состояния человека, причиной которых является первичный дефект митохондриальной ДНК.
|
||||||||||||||||||||||
Последнее изменение этой страницы: 2016-06-23; просмотров: 540; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.116.52.234 (0.011 с.) |