Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Назначение и классификация трансмиссий↑ Стр 1 из 9Следующая ⇒ Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Назначение и классификация трансмиссий
Все, что связывает двигатель с ведущими колесами, составляет трансмиссию автомобиля. Трансмиссия в автомобиле выполняет следующие функции: · передает крутящий момент от двигателя к ведущим колесам; · изменяет величину и направление крутящего момента; · перераспределяет крутящий момент между ведущими колесами.
В зависимости от вида преобразуемой энергии различают следующие виды трансмиссии: · механическая (передает и преобразует механическую энергию); · электрическая (преобразует механическую энергию в электрическую и после передачи к ведущим колесам – электрическую в механическую энергию); · гидрообъемная (преобразует механическую энергию в энергию потока жидкости и после передачи к ведущим колесам – энергию потока жидкости в механическую энергию); · комбинированная (электромеханическая, гидромеханическая – т.н. «гибриды»)
Состав и компоновка трансмиссий
К узлам и агрегатам трансмиссии в общем случае относятся: • сцепление; • коробка передач; • раздаточная коробка; • карданная передача; • главная передача; • дифференциал; • полуоси и валы привода колес.
Для легковых автомобилей по расположению силового агрегата и ведущего моста характерны три компоновочные схемы: 1. Классическая схема. Силовой агрегат расположен впереди, ведущий мост — задний, его привод осуществляется через карданные валы и главную передачу с дифференциалом. 2. Переднеприводная схема. Двигатель, сцепление, коробка передач, главная передача и дифференциал расположены впереди, поперечно или продольно осевой линии автомобиля, ведущий мост — передний. 3. Схема с задним расположением двигателя. Двигатель, сцепление, коробка передач, главная передача и дифференциал расположены сзади, продольно или поперечно относительно осевой линии автомобиля, ведущий мост — задний.
Компоновочные схемы грузовых автомобилей характеризуются расположением двигателя и кабины: 1. Капотная компоновка. Двигатель расположен над передним мостом, кабина — за двигателем. 2. Короткокапотная компоновка. Двигатель — над передним мостом, кабина частично надвинута на двигатель. 3. Кабина над двигателем. Двигатель — над передним мостом, кабина — над двигателем. 4. Передняя кабина. Двигатель — сзади переднего моста, кабина максимально сдвинута вперед.
Механическая трансмиссия: состав, принцип и последовательность работы В общем случае коробка передач состоит из: • картера; • ведущего вала с шестерней; • ведомого вала; • промежуточного вала; • оси шестерни заднего хода; • блока передвижных шестерен; • механизма переключения передач
Переключение передач в них осуществляется передвижением шестерен, которые входят поочередно в зацепление с другими шестернями или блокировкой шестерен на валу с помощью синхронизаторов. Если между ведущей и ведомой шестерней поместить промежуточную шестерню и через нее передавать крутящий момент, то ведомая шестерня изменит направление движения на обратное. Синхронизаторы выравнивают частоту вращения включаемых шестерен и блокируют одну из них с ведомым валом. Управление передвижением шестерен или синхронизаторов осуществляет водитель при выключенном сцеплении.
Перемещение шестерен при включении и выключении передач в коробке производится с помощью механизма переключения,который состоит из: • рычага; • ползунов; • вилок переключения; • фиксаторов; • замков; • предохранителя включения заднего хода.
Гидромеханическая трансмиссия: состав, принцип и последовательность работы
Гидромеханическая трансмиссия состоит из:
Гидротрансформатор состоит из насосного колеса, статора (реактора), турбинного колеса и механизма блокировки. Все детали собраны в общем корпусе, расположенном, как правило, на маховике двигателя машины. Гидротрансформатор наполнен маслом, которое активно перемешивается при его работе. Принцип работы: Насосное колесо жёстко связано с корпусом гидротрансформатора, при вращении вала двигателя оно создает внутри гидротрансформатора поток масла, который вращает колесо статора (реактора) и турбину. Статор (реактор) связан с насосным колесом через обгонную муфту. При значительной разнице оборотов насоса и турбины, статор (реактор) автоматически блокируется и передает на насосное колесо больший объём жидкости. Благодаря статору (реактору) происходит увеличение крутящего момента до трёх раз при старте с места. Турбина жёстко связана с валом АКПП. Благодаря тому, что передача крутящего момента внутри гидротрансформатора происходит без жесткой кинематической связи, исключаются ударные нагрузки на трансмиссию и автомобиль приобретает большую плавность хода. Негативным эффектом гидротр-ра является «проскальзывание» турбинного колеса по отношению к насосному — это приводит к повышенному выделению тепла (в некоторых режимах гидротрансформатор может выделять больше тепла, чем сам двигатель) и увеличению расхода топлива.
Электромеханическая трансмиссия: состав, принцип и последовательность работы В электромеханической трансмиссии механическая энергия двигателя преобразуется в связанном с ним генераторе, в электрическую, которая затем в одном или нескольких тяговых электродвигателях преобразуется в механическую и передаётся на ведущие колёса. При одном тяговом электродвигателе мощность от него к колёсам передаётся через карданную передачу и ведущий мост. При многоприводной передаче агрегаты механической трансмиссии практически отсутствуют. Тяговые электродвигатели монтируют внутри, так называемых «мотор-колёс», и связывают с ними редукторами. В состав трансмиссии входят: генераторы постоянного и переменного тока, соединённые с двигателем. Генератор обеспечивает работу вспомогательных механизмов, работающих на переменном токе. Генератор питает электродвигатели мотор-колёс. Генератор имеет последовательную и параллельную обмотки возбуждения, а присоединённый к нему тяговый электродвигатель - последовательную обмотку возбуждения. Управляют трансмиссией педалью дроссельной заслонки и переключателем хода, с помощью которого осуществляют реверсирование вращения электродвигателя или выключают его (изменяют направление тока в обмотке или разрывают цепь её питания). При трогании с места, нажимая на педаль, замыкают контакты выключателя подпитки и, тем самым, включают в цепь обмотки возбуждения генератора аккумуляторную батарею. При этом, в результате увеличения силы тока возбуждения, резко возрастает мощность генератора, что обеспечивает интенсивный разгон автомобиля. Частота вращения генератора и его напряжение увеличиваются так, что срабатывает реле и отключает аккумуляторную батарею из цепи.
Требования к колесам с пневматическими шинами. Классификация шин и их маркировка Требования, предъявляемые к шинам. 1. Обеспечение высокой комфортабельности — шина и подвеска, работая последовательно в вертикальном направлении, обеспечивают требуемую частоту собственных колебаний подрессоренной части конструкции. Помимо этого, влияние шины на комфортабельность автомобиля определяется следующим: • уровнем шума при прямолинейном и криволинейном движении; • сопротивлением повороту управляемых колес; • радиальным и боковым биениями, которые передаются на рулевое управление. 2. Обеспечение безопасности движения — реализация этого требования в основном определяется прочностью каркаса шины, способного противостоять действию внутреннего давления и ударным нагрузкам. Безопасность шины определяется следующими ее свойствами: • устойчивостью прямолинейного движения; • способностью двигаться с высокими скоростями без опасности возникновения сильных вибраций и разрушения; • хорошими сцепными свойствами как в продольном, так и в боковом направлениях, а также на дорогах с мокрым, загрязненным, заснеженным и обледенелым покрытиями. 3. Высокие экономические показатели — экономичность шины определяется ее стоимостью и эксплуатационными затратами. 4. Удобство компоновки (с позиции размещения колес и шин на автомобиле они должны иметь минимально допустимые размеры) заключается в следующем: • уменьшается высота и ширина колесной ниши, что позволяет увеличить объем салона, моторного отсека и багажного отделения легкового автомобиля или улучшить планировку салона автобуса; • уменьшается высота легкового автомобиля; • уменьшается высота пола автобуса или положение грузовой платформы грузового автомобиля, что важно для ускорения погрузки и выгрузки; • уменьшается пространство, занимаемое запасным колесом. В настоящее время на легковых автомобилях применяются колеса диаметром обода не менее 13» (дюймов), а на грузовых — 18». Шины различают по назначению, геометрическим параметрам, конструктивным признакам и эксплуатационным характеристикам. По назначению различают шины: • для легковых автомобилей; • для грузовых автомобилей и автобусов; • для автомобилей повышенной и высокой проходимости; • для специальных машин. В зависимости от дорожного покрытия и его состояния они различаются по типу рисунка протектора: • дорожные (для дорог с усовершенствованным покрытием); • универсальные (для дорог с различным покрытием); • повышенной проходимости; • карьерные. Учитывая различное состояние покрытия в зависимости от времени года шины бывают: • летние (со стандартным дорожным рисунком); • для грязи и снега; • для грязи, снега и льда.
Конструкция элементов колес Колесо − это вращающийся и передающий элемент ходовой части, расположенный между шиной и ступицей. Колеса транспортных средств подразделяются на одинарные и сдвоенные(спарка). Колесо состоит из 2х основных элементов: шина, диск. Шина автомобиля воспринимает вертикальную нагрузку от веса автомобиля и все усилия, возникающие в пятне контакта шины с дорогой при ускорении, торможении и повороте автомобиля, смягчая силовые воздействия на автомобиль. На легковых автомобилях применяются пневматические камерные и бескамерные шины, при этом последние имеют преимущественное использование. Каркас шины − главный силовой элемент покрышки, который отвечает за прочность и гибкость. Представляет из себя один или несколько слоев обрезиненного корда. Брекер − подушечный слой (пояс) автомобильного колеса, представляет из себя резинотканевую или металлокордную прослойку, которая проходит по всей окружности между каркасом и протектором. Брекер состоит из двух и более слоев обрезиненного корда. Протектор – «беговая» часть шины, он контактирует с дорогой и во многом определяет характеристики покрышки. Представляет собой толстый слой специальной износостойкой резины, которая состоит из сплошной полосы (закрывающей брекер) и наружной рельефной части − протектора, рисунок которого определяет приспособленность шины к тем или иным дорожным условиям. Боковина шины − это тонкий эластичный слой резины толщиной 1,5 - 3,0 мм на боковых стенках каркаса. Он защищает каркас от механических повреждений и проникновения влаги. Борт − это жесткая посадочная часть покрышки для ее надежной фиксации на ободе колеса. Состоит из слоя корда каркаса, завернутого вокруг проволочного кольца, и твердого наполнительного резинового шнура. В случае прокола шины, не позволяющего продолжить движение в комплекте автомобиля должно находится обычное колесо, или колесо уменьшенного объема «докатка». Маркировка: 205/55 R 16 (205-Номинальная ширина покрышки, 55-отношение высоты к ширине, R-тип каркаса шин, 16- диаметр обода в дюймах) Диски колес, применяемые на легковых автомобилях, разделяются на стальные и легкосплавные. Стальные колеса изготавливают методом штамповки из листового металла с последующей сваркой составляющих элементов. Достоинствами стальных колес являются сравнительно невысокая стоимость и хорошие эксплуатационные качества. К недостаткам следует отнести большую массу колеса и несколько широкое поле допусков на изготовление, что требует тщательной балансировки. Легкосплавные колеса изготавливают методом литья или ковки. Материалами для колес являются сплавы на основе алюминия, магния и титана, поэтому стоимость таких колес значительно выше. Колеса на основе магниевых сплавов требуют специального антикоррозионного покрытия.
Гидравлические двухтрубные Двухтрубный гидравлический амортизатор Двухтрубный амортизатор состоит из двух соосных (одна в одной) труб, внешняя из которых является корпусом, внутренняя заполнена рабочей жидкостью и в ней перемещается поршень с клапанами. Пространство между труб заполнено запасом жидкости для охлаждения и компенсации утечек, а также воздухом — для компенсации изменения объёма (температурное расширение жидкости и вход-выход штока). Достоинства: · Относительная простота изготовления и ремонта · Приемлемые рабочие характеристики (в том числе надёжность) для большинства применений в транспорте · Отсутствие выступающих деталей — может устанавливаться внутри пружины подвески · Малая нагрузка и соответственно требования к уплотнению штока — нагрузка только при отбое (вытягивании штока), при небольшом пропускании запаса масла в амортизаторе может хватить на несколько лет при полном сохранении работоспособности амортизатора (но ухудшении охлаждения). Недостатки: · Должен устанавливаться корпусом вниз (штоком вверх), что ухудшает характеристики подвески (увеличение неподрессоренных масс) · При сильных нагрузках (пересечённые местности, спорт) при работе жидкость сильно греется и может вспениться или смешаться с компенсационным газом, что сильно ухудшит демпфирование, а это опасно). Требования, предъявляемые к рулевому управлению, его составные части При помощи рулевого управления осуществляется поворот управляемых колес, и тем самым изменяется направление движения автомобиля. Рулевое управление состоит из: Рулевое управление представляет собой устройство, от которого во многом зависит безопасность движения автомобиля, потому к нему предъявляются следующие требования: На большинстве автомобилей управление осуществляется поворотом управляемых колес. Практически на всех двухосных автомобилях управляемыми колесами являются передние колеса. Исключение составляют специальные автотранспортные средства с задними управляемыми колесами. В трехосных автомобилях, которые имеют сближенные оси задней тележки (например КамАЗ), управление также осуществляется передними колесами. В некоторых трехосных автомобилях управляемыми колесами являются колеса крайних осей (передней и задней). Благодаря этому автомобиль становится более маневренным и более проходимым. В таких автомобилях промежуточную ось размещают посередине автомобиля. Рулевой механизм обеспечивает поворот управляемых колес при небольшом усилии на рулевые колеса, это достигается за счет увеличения передаточного, числа рулевого механизма. Конструкция рулевого механизма включает в себя: Рулевые механизмы в зависимости от типа рулевой передачи делятся на: Рулевой привод состоит из: Продольная тяга связывает сошку с поворотным рычагом. Продольная тяга чаще всего применяется при зависимой подвеске. На концах тяги размещаются шаровые шарниры, которые поджимаются жесткими пружинами. За счет таких шарниров и пружин удается немного амортизировать удары, воспринимаемые управляемыми колесами. Реечный рулевой механизм Реечный рулевой механизм является самым распространенным типом механизма, устанавливаемым на легковые автомобили. Реечный рулевой механизм включает шестерню и рулевую рейку. Шестерня устанавливается на валу рулевого колеса и находится в постоянном зацеплении с рулевой (зубчатой) рейкой. http://systemsauto.ru/wheel/shema_rack_pinion_steering.htmlРабота реечного рулевого механизма осуществляется следующим образом. При вращении рулевого колеса рейка перемещается вправо или влево. При движении рейки перемещаются присоединенные к ней тяги рулевого привода и поворачивают управляемые колеса. Реечный рулевой механизм отличает простота конструкции, соответственно высокий КПД, а также высокая жесткость. Вместе с тем, данный тип рулевого механизма чувствителен к ударным нагрузкам от дорожных неровностей, склонен к вибрациям. В силу своих конструктивных особенностей реечный рулевой механизм устанавливается на переднеприводных автомобилях с независимой подвеской управляемых колес. Червячный рулевой механизм Червячный рулевой механизм состоит из глобоидного червяка (червяка с переменным диаметром), соединенного с рулевым валом, и ролика. На валу ролика вне корпуса рулевого механизма установлен рычаг (сошка), связанный с тягами рулевого привода. Вращение рулевого колеса обеспечивает обкатывание ролика по червяку, качание сошки и перемещение тяг рулевого привода, чем достигается поворот управляемых колес. Червячный рулевой механизм обладает меньшей чувствительностью к ударным нагрузкам, обеспечивает большие углы поворота управляемых колес и соответственно лучшую маневренность автомобиля. С другой стороны червячный механизм сложен в изготовлении, поэтому дорог. Рулевое управление с таким механизмом имеет большое число соединений, поэтому требует периодической регулировки. Червячный рулевой механизм применяется на легковых автомобилях повышенной проходимости с зависимой подвеской управляемых колес, легких грузовых автомобилях и автобусах. Ранее такой тип рулевого механизма устанавливался на отечественной «классике». Винтовой рулевой механизм Винтовой рулевой механизм объединяет следующие конструктивные элементы: винт на валу рулевого колеса; гайку, перемещаемую по винту; зубчатую рейку, нарезанную на гайке; зубчатый сектор, соединенный с рейкой; рулевую сошку, расположенную на валу сектора. Особенностью винтового рулевого механизма является соединение винта и гайки с помощью шариков, чем достигается меньшее трение и износ пары. Принципиально работа винтового рулевого механизма схожа с работой червячного механизма. Поворот рулевого колеса сопровождается вращением винта, который перемещает надетую на него гайку. При этом происходит циркуляция шариков. Гайка посредством зубчатой рейки перемещает зубчатый сектор и с ним рулевую сошку. Винтовой рулевой механизм в сравнении с червячным механизмом имеет больший КПД и реализует большие усилия. Данный тип рулевого механизма устанавливается на отдельных легковых автомобилях представительского класса, тяжелых грузовых автомобилях и автобусах. РАЗВАЛ Возможно, самый простой для понимания параметр из трех. Развал – это угол установки колес по отношению к поверхности дороги при взгляде на автомобиль спереди. Если провести воображаемую линию через центр колеса перпендикулярно к дороге, то это будет нулевой развал. Если колеса верхней стороной направлены внутрь(«домиком») – это отрицательный угол развала. Если колеса верхней стороной направлены наружу – это положительный угол развала. КАСТЕР КАСТЕР - это продольный угол наклона оси поворота колеса. Это линия проходящая чаще всего через верхнюю и нижнюю точки крепления стойки. Положительный кастер – когда ось поворота колеса завалена в сторону задней части машины, при взгляде на автомобиль сбоку. Такая конфигурация создает стабилизирующий момент, возвращающий колеса в исходное положение и способствующий прямолинейному движению автомобиля. Чем больше кастер смещен в сторону позитивного, тем более стабильна машина будет на прямой, но тем сильнее возрастет усилие на руле при повороте. Кроме того, при повороте внутреннее колесо будет приподнимать машину, а внешнее опускать, тем самым создавая боковой крен, который совсем не желателен. СХОЖДЕНИЕ Влияет главным образом на 3 параметра – износ шин, стабильность прямолинейного движения и управляемость на входе в поворот. Схожде́ние — это угол/расстояние между направлением движения и плоскостью вращения колеса. Отрицательным считается схождение, когда колеса смотрят в разные стороны по ходу движения. Рабочая тормозная система Чаще всего используется рабочая тормозная система, которая позволяет водителю в обычных условиях эксплуатации снизить скорость движения автомобиля до его полной остановки. Эта система приводится в действие усилием ноги водителя, которое он прилагает, нажимая на педаль ножного тормоза. Чем сильнее нажимаем на педаль, тем сильнее тормозим. По сравнению с другими видами тормозных систем, самая большая эффективность действия именно у рабочей системы. Запасная тормозная система Запасная тормозная система служит для остановки автомобиля в случае отказа рабочей системы торможения. Она оказывает менее эффективное тормозящее действие на машину, чем рабочая система. Функции запасной тормозной системы может выполнять стояночная система. Назначение и классификация трансмиссий
Все, что связывает двигатель с ведущими колесами, составляет трансмиссию автомобиля. Трансмиссия в автомобиле выполняет следующие функции: · передает крутящий момент от двигателя к ведущим колесам; · изменяет величину и направление крутящего момента; · перераспределяет крутящий момент между ведущими колесами.
В зависимости от вида преобразуемой энергии различают следующие виды трансмиссии: · механическая (передает и преобразует механическую энергию); · электрическая (преобразует механическую энергию в электрическую и после передачи к ведущим колесам – электрическую в механическую энергию); · гидрообъемная (преобразует механическую энергию в энергию потока жидкости и после передачи к ведущим колесам – энергию потока жидкости в механическую энергию); · комбинированная (электромеханическая, гидромеханическая – т.н. «гибриды»)
|
||||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 4906; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.227.64 (0.011 с.) |