ЗНАЕТЕ ЛИ ВЫ?

Установки для осушки воздуха охлаждением



Первой ступенью осушки воздуха следует считать концевой холодильник компрессорной установки (ВОК). В концевом холодильнике воздух охлаждается обычно до 40 – 50 °С. При таких температурах в большинстве случаев выпадения влаги из воздуха не происходит.

Рассмотрим случай, наиболее характерный для самого неблагоприятного периода эксплуатации системы: tнар =+10 ¸ -10 °С.

При параметрах атмосферного воздуха: Pва=0,1 МПа; tва=10 °С и j=70 %, его влагосодержание составляет dва = 5,5 г/кг.

При давлении сжатого воздуха в концевом холодильнике PВОК = 0,8 МПа и температуре tВОК=40-50 °С насыщающее влагосодержание равно dн=6-10 г/кг. В обоих случаях j < 1 и выпадения влаги не происходит.

Таким образом, ВОК осушает воздух только в кратковременный летний период. Стабильную и надежную осушку воздуха можно осуществить с помощью холодильной машины.

Принципиальная схема такой воздухоосушительной установки приведена на рис. 12.1.

Работает установка следующим образом.

Теплый влажный воздух из концевого холодильника поступает в РТО, где он охлаждается и частично осушается встречным холодным воздухом. Сконденсировавшаяся капельная влага отделяется во влагоотделителе (ВО). Окончательная осушка воздуха происходит в охладителе-осушителе, в трубное пространство которого подается либо хладагент, либо хладноситель от холодильной машины. Сухой холодный воздух после ВО поступает в РТО, где нагревается до температуры потребления.

 
 

Применение регенеративного теплообменника позволяет снизить холодопроизводительность холодильной машины на 40-50 %.

 

 

Рис. 12.1. Схема осушки сжатого воздуха охлаждением:

КУ – компрессорная установка; ВОК – воздухоохладитель концевой (концевой холодильник); ВО – влагоотделитель; РТО – регенеративный теплообменник; ООВ – охладитель-осушитель воздуха; ХМ – холодильная машина

 

В серийных воздухоосушительных установках, которыми комплектуются воздушные турбокомпрессорные машины К-250 и К-500, воздух охлаждают до 3 – 5 °С. Это соответствует влагосодержанию d = 0,65 – 0,7 г/кг (при атмосферном давлении это соответствует точке росы приблизительно -20 °С). Более низкие температуры охлаждения приводят к обмерзанию теплообменных поверхностей. Это приводит к затруднениям в эксплуатации, так как необходимо предусмотреть периодическое оттаивание теплообменников.

Более подробное описание серийных воздухоосушительных установок можно найти в [1] и [6].

В КГЭУ на кафедре промышленной теплоэнергетики разработан экономный способ осушки воздуха с рекуперацией холода намерзшей ледяной шубы в охладителях-осушителях [7]. Схема установки, реализующей такой способ, приведена на рис. 12.2.

Установка состоит из контура осушаемого воздуха и холодильной машины. Контур осушаемого воздуха содержит рекуперативный теплообменник (РТО), влагоотделитель (ВО), переключатель потока (ПП), последовательно подключенные воздухоохладители (ООВ1 и ООВ2) и сепаратор (С).

Влажный теплый воздух поступает в РТО, где охлаждается обратным потоком сухого холодного воздуха. После РТО осушаемый воздух поступает во влагоотделитель ВО, в котором происходит отделение капельной влаги, и, пройдя переключатель потока воздуха (ПП), он направляется в воздухоохладитель ООВ1. В ООВ1 воздух охлаждается и частично осушается в результате таяния ледяной шубы, образовавшейся на теплообменной поверхности аппарата в предыдущем цикле. При этом охлаждающая среда (хладагент или хладоноситель) в ООВ1 не подается. Из ООВ1 воздух поступает в ООВ2, где окончательно охлаждается до заданной точки росы за счет подаваемой в аппарат охлаждающей среды.

 
 

 

Рис. 12.2. Схема осушки воздуха с рекуперацией холода льдообразования: РТО – рекуперативный теплообменник (воздух-воздух); ВО - влагоотделитель; ПП – переключатель потока воздуха; ООВ – охладитель-осушитель воздуха; С – сепаратор; ЭГК – электрогидроклапан; ОК – обратный клапан

Осушенный воздух из ООВ2, пройдя переключатель потока и сепаратор С, где улавливается капельная влага и снежная пыль, поступает в РТО. Здесь он нагревается до заданной температуры и подается потребителю.

При достижении заданного значения перепада давления на ООВ1 происходит автоматическое переключение потоков воздуха в ПП (поворотом заслонки на 90°) и охлаждающей среды в ЭГК. Рабочий процесс повторяется, но воздух поступает уже с ООВ2 в ООВ1.

Значение точки росы осушенного воздуха должно быть обосновано технико-экономическим расчетом.

Адсорбционный способ осушки

Этот способ применяют для более глубокой осушки воздуха. Он используется в воздухоразделительных установках и в системах воздухоснабжения пневмоавтоматики на взрывоопасных производствах. Способ основан на свойствах ряда пористых твердых тел-адсорбентов поглощать водяные пары.

Схема блока адсорбционной осушки воздуха приведена на рис. 12.3 .

Влажный воздух из компрессора пропускается через один из попеременно работающих адсорберов. Влага поглощается твердым гранулированным адсорбентом. Сухой воздух очищается от пыли адсорбента в фильтре 4 и направляется в сеть.

При прохождении воздуха слои адсорбента насыщаются влагой. Слой, после которого воздух выходит осушенным, называют высотой работающего слоя. В процессе работы высота работающего слоя постепенно увеличивается. Через какой-то промежуток времени (время защитного действия) она достигает высоты засыпанного слоя адсорбента. Это означает, что адсорбер исчерпал свои способности. Воздух переключается на другой адсорбер (обычно через 8 или 16 часов), а насыщенный влагой аппарат ставят на регенерацию.

 

 
 

Рис. 12.3. Адсорбционная воздухоосушительная установка:

1 – влагоотделитель; 2 – электропневмоклапан; 3 – адсорберы; 4 – фильтр пыли; 5 – электронагреватель воздуха; 6 – дроссель нагреваемого воздуха

 

При регенерации через адсорбер пропускается сухой нагретый воздух. Нагревается воздух в электрическом (реже в газовом) нагревателе. Обычно на регенерацию затрачивается примерно четыре часа. Первый час – нагрев, второй и третий – собственно регенерация, четвертый – охлаждение, продувкой воздуха при выключенном нагревателе.

Процесс адсорбции протекает экзотермически. Но при высоком давлении выделение теплоты в этом процессе незначительно, поэтому достаточно охлаждающего эффекта самого осушаемого воздуха.

Для поглощения влаги в качестве адсорбентов используют главным образом силикагели, алюмогели, активный глинозем, а в последнее время – синтетические цеолиты. Силикагель, алюмогель, и активный глинозем представляют собой высокопористые вещества в виде зерен неправильной формы.

Силикагели (марки КСК и КСМ) содержат примерно 90 % SiO2. Это зерна светло-желтого цвета размером 3-7 мм. Температура регенерации силикагеля – 170-180 °С.

Алюмогель (марки А1 и А2) - активная окись алюминия, белые или светло-серые зерна размером 3-7 мм, температура регенерации – 250 - 280 °С.

Цеолиты, называемые также молекулярными ситами (тип А и тип Х), – это кристаллические полигидраты алюмосиликатов кальция и натрия, из которых удалена вода. Они бывают природные и искусственные, размеры гранул 2-4 мм. Температура регенерации – 200 – 350 °С. Это самые эффективные осушители (до точки росы –100 °С), но и самые дорогие.

Динамическая влагоемкость адсорбентов при атмосферном давлении составляет: для силикагеля марки КСМ – до 25 %; для силикагеля марки КСМ – до 9,5 %; алюмогеля и глинозема – до 8-12 % массы адсорбента.

При расчете промышленных блоков осушки рекомендуется принимать влагоемкость активной окиси алюминия А2 и глинозема равной 4-5%, синтетических цеолитов – 10 % массы адсорбента [10].

Контрольные вопросы

1. Что называется осушкой воздуха?

2. Какие способы осушки воздуха используются в промышленности?

3. Что называют "точкой росы" воздуха?

4. Что называют влагосодержанием воздуха?

5. Что называют абсолютной влажностью воздуха?

6. Как достигается заданное влагосодержание воздуха в блоках осушки воздуха охлаждением?

7. Какой положительный эффект достигается использованием регенеративного теплообменника в блоке осушки воздуха?

8. Как осуществляется адсорбционная осушка воздуха?

9. Какие адсорбенты используются в блоках осушки воздуха?

10. Что называют регенерацией адсорбента и как она осуществляется в блоках осушки воздуха?

11. Какова продолжительность процесса регенерации адсорбента принята в воздухоосушительных блоках?

12. Какой адсорбент называют "молекулярным ситом"?

13. Как осуществляется борьба с обмерзанием поверхностей теплообменников-воздухоохладителей?

 

 





Последнее изменение этой страницы: 2016-04-26; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.237.205.144 (0.006 с.)