ЗНАЕТЕ ЛИ ВЫ?

Определение рабочих параметров компрессорных машин по характеристикам



7.3.1. Характеристики сети

Компрессор работает на потребителя через сеть. Сетью называют совокупность устройств, предназначенных для транспортирования воздуха или газа.

Каждая сеть характеризуется определенной зависимостью между расходом Qс и давлением Pс, которое необходимо иметь в начале сети для реализации этого расхода. Зависимость называется характеристикой сети и может быть выражена уравнением:

, (7.1)

где Pк – необходимое давление в конце сети (у потребителя с постоянным противодавлением); s – сопротивление коммуникаций сжатого воздуха; Qс – объемный расход воздуха.

Зависимость (7.1) представляет собой уравнение параболы, графическое отображение которой представлено на рис. 7.4.

 

 

 

Рис. 7.4. Характеристика сети при различных значениях ее сопротивления: s0<s1<s2

 

 

Чтобы сеть пропустила расчетный расход Qс.р, в начале сети с сопротивлением s0 необходимо создать давление Pс.р. При этом у потребителя (т.е. в конце сети) будет поддерживаться постоянное давление Pк.

Изменение сопротивления сети (прикрытие задвижек на ней) вызывает изменение характеристики, т.е. изменяется ее крутизна (s0<s1<s2).

Рабочие параметры любой компрессорной машины определяются точкой пересечения характеристики компрессора с характеристикой сети.

7.3.2. Рабочие параметры объемных машин (на примере ПК)

Пример нахождения рабочих параметров поршневого компрессора, работающего на сеть, приведен на рис. 7.5.

Наложим на характеристику компрессора (при n2) характеристику сети c полностью открытой задвижкой и общим сопротивлением s1 (в одинаковом масштабе по осям диаграммы).

Рис. 7.5. Характеристики компрессора и сети, работающих совместно: а – диаграммы характеристик при различных значениях n и s; б – схема системы: 1– воздухозабор; 2 – компрессор; 3 – задвижка; 4 – магистраль; 5 – коллектор сжатого воздуха у потребителя

 

Точка пересечения а определяет рабочий режим системы (рабочая точка). Компрессор в этом режиме развивает давление Pа, а его производительность равна расходу воздуха через сеть Qа.

Прикроем задвижку 3. Сопротивление сети станет s2>s1. Точка пересечения б определяет новый режим. Давление нагнетания вырастет (Pб>Pа), а расход воздуха останется практически неизменным (Qб@Qа). То же будет наблюдаться при дальнейшем прикрытии задвижки (см. точку в).

Таким образом, очевидно, что с помощью задвижки на линии нагнетания невозможно регулирование производительности поршневого компрессора. С ростом сопротивления сети увеличиваются степень повышения давления в компрессоре и потребляемая мощность, но вся дополнительно затрачиваемая мощность будет срабатываться на дросселе (задвижке).

 

7.3.3. Рабочие параметры турбокомпрессоров. Помпаж

Методика определения рабочих параметров ТК представлена на рис. 7.6.

Известны характеристика компрессора (при n=const) и характеристика сети с открытой задвижкой на нагнетании (с сопротивлением s1).

На характеристику ТК наложим характеристику сети. Точка пересечения характеристик (точка а) определяет рабочий режим системы. Координаты этой точки и есть рабочие параметры компрессора – Pа и Qа.

При правильном выборе компрессора под заданную сеть точка а должна совпадать или быть вблизи расчетной точки. В таком случае Qа=Qрас и .

Если начать прикрывать задвижку 5, то сопротивление сети начнет возрастать (s1<s2<s3) и рабочая точка начнет перемещаться по характеристике ТК влево. При этом производительность компрессора будет снижаться (Qа>Qб>Qв и т.д.), а развиваемое давление будет расти (Pа<Pб<Pв и т.д.).

 

 
 

 

Рис. 7.6. Характеристики турбокомпрессора и сети работающих совместно: а – диаграммы характеристик ТК и сети; б – схема системы воздухоснабжения: 1 – воздухозабор; 2 – дроссельная заслонка на всасывании; 3 – турбокомпрессор; 4 – автоматический противопомпажный клапан; 5 – задвижка на нагнетании; 6 – коллектор сжатого воздуха у потребителя

 

В какой-то момент рабочая точка достигнет критической (точка к), в которой давление достигает максимума Pмакс, а производительность минимума Qмин. При дальнейшем увеличении s наступает помпажный режим. Он заключается в следующем.

Если еще увеличить сопротивление сети (например, s4), характеристика сети пройдет левее критической точки к(рабочая точка г). Компрессор начнет развивать давление меньше, чем установилось ранее в сети, т.е. Pг<Pк. Воздух перестанет поступать из компрессора в сеть, так как не сможет преодолеть противодавления. В результате расход упадет до нуля, т.е. рабочая точка переместится в положение д. Это так называемый холостой ход, Pд – давление холостого хода.

Через некоторое время давление в сети упадет из-за потребления воздуха и оно станет меньше, чем Pд. Компрессор возобновит подачу с этим давлением. Рабочая точка переместится в положение е на характеристике ТК. Поскольку сеть не способна пропустить расход Qе при давлении Pе на входе, то рабочая точка начнет быстро перемещаться влево, достигнет положения г и все повторяется.

Появляется пульсационный режим подачи. Амплитуда и частота пульсаций будет зависеть от величины развиваемого давления и аккумулирующей способности сети.

Это явление называется помпажом. Такой режим работы может за несколько секунд разрушить компрессор и поэтому недопустим. Для его предотвращения устанавливают специальный автоматический противопомпажный клапан, который в нужный момент открывается и выпускает излишки воздуха из сети.

 





Последнее изменение этой страницы: 2016-04-26; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.237.205.144 (0.01 с.)