Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Лабораторная работа №1 «Качественное определение липидов»Содержание книги
Поиск на нашем сайте
Известно, что жиры животного и растительного происхождения представляют собой сложный комплекс органических соединений. Основной составной частью всех жиров являются сложные эфиры трехатомного спирта – глицерина и жирных кислот, называемые триглицеридами. Такие сложные эфиры имеют следующую общую формулу:
Естественные жиры в большинстве случаев представляют собой смесь разнокислотных триглицеридов. Однокислотные триглицериды в жирах бывают лишь в том случае, если одной из кислот значительно больше, чем остальных. Однокислотные триглицериды чаще встречаются в животных жирах, чем в растительных. Так, например, в бараньем сале содержание триглицеридов насыщенных кислот (стеариновой и пальмитиновой) составляет 26% и триглицеридов ненасыщенных кислот (олеиновой и линолевой) 4%. Обратите внимание, что единственным спиртом, участвующим в образовании составной части жиров – сложных эфиров – является трехатомный спирт – глицерин. Поэтому сложные эфиры жиров называют глицеридами. Качественное определение жиров основано на таких характерных их свойствах, как: - образование на бумаге пятна, которое не исчезает при нагревании; - цветная реакция с осмиевой кислотой; - реакция омыления жира; - дегидратация глицерина водоотнимающими средствами (гидросульфит калия или магния, борная кислота) с образованием акролеина и др. В состав триацилглицеринов входят остатки насыщенных и ненасыщенных кислот нормального строения, преимущественно с четным числом атомов углерода от 8 до 24. Помимо основного компонента - триацилглицеринов, в состав жиров входят сопутствующие вещества – фосфатиды, свободные жирные кислоты, моно- и диглицериды, воски, токоферолы, витамины, пигменты и др. Состав и свойства жиров зависят от источника и способа выделения. Для характеристики качества и природы жира используют комплекс физических и химических показателей. К числу основных физических показателей относится температура плавления. Температурой плавления жира называется температура, при которой он из твердого состояния переходит в жидкое. Поскольку натуральные жиры представляют собой смеси глицеридов, имеющие различные температуры плавления, переход их в жидкое состояние происходит в пределах некоторого интервала температур. На температурах плавления того или иного жира сказываются специфические особенности глицеридов и их жирнокислотный состав. У насыщенных жирных кислот температуры плавления возрастают с увеличением молекулярной массы. У ненасыщенных – на температуру плавления влияют не столько двойные связи, сколько их положение в цепи и пространственное расположение отдельных частей молекулы. Среди химических показателей особое значение имеют йодное, кислотное число, число нейтрализации, число омыления и эфирное число. Йодное число (ЙЧ) – (или так называемый коэффициент непредельности) характеризует степень ненасыщенности жира и выражается количеством йода в граммах, которое требуется для полного насыщения жирных кислот, содержащихся в 100 граммах жира. По величине этого показателя судят о преобладании в жирах насыщенных или ненасыщенных жирных кислот. Чем выше в жире содержание ненасыщенных жирных кислот, тем выше йодное число. Тугоплавкие жиры имеют низкое йодное число, легкоплакие – высокое. Йодное число является показателем консистенции сливочного масла и должно учитываться при выборе температурных режимов обработки сливок в процессе их созревания и перемешивания. Оно повышается летом и понижается зимой и лежит в пределах 28-45 г/100 г. Метод основан на способности йода присоединяться по кратным связям. Непрореагировавший йод оттитровывают тиосульфатом натрия. Кислотное число (КЧ) – количество миллиграммов едкого кали (КОН), необходимое для нейтрализации свободных жирных кислот, содержащихся в 1 г жира. Кислотное число жира зависит от его качества, способа получения, условий хранения и других факторов. Число нейтрализации (ЧН) – количество миллиграммов едкого кали, необходимое для нейтрализации 1 г жирных кислот, что соответствует 100%-ному содержанию свободных жирных кислот в 1 г образца. Число нейтрализации индивидуальных жирных кислот - величина постоянная. Используя эти два химических показателя, можно определить содержание свободных жирных кислот в жире (Х), %: где а – коэффициент пересчета на индивидуальную кислоту.
Число омыления (ЧО) – количество миллиграммов едкого кали, необходимое для омыления глицеридов (связанных жирных кислот) и для нейтрализации свободных жирных кислот, входящих в состав 1 г исследуемого жира. Число омыления – характерный показатель и колеблется для одного и того же сорта масла или жира в узких пределах. Эфирное число (ЭЧ) – количество миллиграммов едкого кали, необходимое для омыления сложных эфиров, находящихся в 1 г жира. Эфирное число не является постоянной величиной и зависит от изменения кислотного числа. Цель работы: Ознакомление с методами качественного обнаружения триглицеридов.
Реактивы и оборудование: 1) Растительное масло; 2) Сливочное масло; 3) Спиртовой раствор едкого кали: 30 г КОН растворяют в 20 мл воды, поохлаждении перемешивают с 200 мл этанола. 4) 5%-ный раствор хлорида кальция; 5) 10%-ный раствор ацетата свинца; 6) концентрированная H2SO4; 7) концентрированная HCl; 8) 10%-ный раствор едкого натра; 9) 2%-ный раствор сульфата меди; 10) пробирки для гидролиза с пробкой и стеклянной трубкой; 11) смесь этилового спирта и хлороформа (10:1); 12) 0,1 н раствор йода; 13) 0,1 н раствор тиосульфата натрия; 14) 1%-ный раствор крахмала.
Порядок выполнения работы.
Опыт 1. Проба на образование пятна. Каплю исследуемого жира наносят стеклянной палочкой на фильтровальную бумагу. Появляется сальное пятно, которое не исчезает при нагревании, что свидетельствует о наличии жира.
Опыт 2. Омыление жира. Жиры под влиянием щелочей гидролизуются с образованием калиевых солей жирных кислот (мыла) и глицерина:
1 мл растительного масла смешивают в пробирке для гидролиза с 20 мл спиртового раствора едкого кали. Пробирку нагревают на кипящей бане, закрыв пробкой с длинной стеклянной трубкой (в качестве обратного холодильника), до полного омыления (примерно 60 мин.). Показателем полноты омыления может служить отсутствие образования жирных пятен на поверхности воды, в которую добавлена капля гидролизата. Гидролизат разводят до 20 мл дистиллированной водой и полученный раствор используют для выявления составных частей жира, жирных кислот и глицерина.
Опыт 3. Открытие жирных кислот. Для обнаружения жирных кислот используют гидролизат, полученный в опыте 3.
Опыт 3.1. В первую пробирку к 1 мл гидролизата приливают равное количество воды и взбалтывают. Образуется стойкая пена, которая указывает на присутствие в гидролизате растворенного калийного мыла, обладающего способностью понижать поверхностное натяжение растворов.
Опыт 3.2. Во вторую пробирку к 1 мл гидролизата добавляют несколько капель 5%-ного раствора хлорида кальция. Выпадает белый осадок нерастворимого кальциевого мыла.
Опыт 3.3. В третью пробирку к 1 мл гидролизата прибавляют несколько капель 10%-ного раствора ацетата свинца. Выпадает осадок свинцовых солей жирных кислот, который при нагревании становится вязким (свинцовый пластырь).
Опыт 3.4. В четвертую пробирку к 2 мл гидролизата добавляют 0,5 мл концентрированнойHCl. Образующиеся жирные кислоты нерастворимы в воде и будут собираться в верхней части содержимого пробирки.
Опыт 3.5. В пятую пробирку к 2 мл гидролизата добавляют несколько капель 10%-ного раствора H2SO4 (осторожно!). Выпадает белый осадок свободных жирных кислот. Содержимое этой пробирки фильтруют и оставляют для открытия глицерина.
Опыт 4. Открытие глицерина. К остатку профильтрованного гидролизата добавляют 8-10 капель 10%-ного раствора NaOH и 1-2- капли 2%-ного раствора сульфата меди. Появляется слабо-синее окрашивание, которое вызвано образованием глицерата меди:
|
||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 2659; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.219.207.115 (0.008 с.) |