Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Б1. Единицы измерения количества информации.↑ Стр 1 из 17Следующая ⇒ Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Билет № 1 Понятие «информация». Слово «информация» происходит от латинского слова informatio, что в переводе означает сведение, разъяснение, ознакомление. Понятие «информация» является базовым в курсе информатики, невозможно дать его определение через другие, более «простые» понятия. В геометрии, например, невозможно выразить содержание базовых понятий «точка», «луч», «плоскость» через более простые понятия. Содержание основных, базовых понятий в любой науке должно быть пояснено на примерах или выявлено путем их сопоставления с содержанием других понятий. В случае с понятием «информация» проблема его определения еще более сложная, так как оно является общенаучным понятием. Данное понятие используется в различных науках (информатике, кибернетике, биологии, физике и др.), при этом в каждой науке понятие «информация» связано с различными системами понятий. Информация в физике. В физике мерой беспорядка, хаоса для термодинамической системы является энтропия системы, тогда как информация (антиэнтропия) является мерой упорядоченности и сложности системы. По мере увеличения сложности системы величина энтропии уменьшается, и величина информации увеличивается. Процесс увеличения информации характерен для открытых, обменивающихся веществом и энергией с окружающей средой, саморазвивающихся систем живой природы (белковых молекул, организмов, популяций животных и так далее). Таким образом, в физике информация рассматривается как антиэнтропия или энтропия с обратным знаком. Информация в биологии. В биологии, которая изучает живую природу, понятие «информация» связывается с целесообразным поведением живых организмов. Такое поведение строится на основе получения и использования организмом информации об окружающей среде. Понятие «информация» в биологии используется также в связи с исследованиями механизмов наследственности. Генетическая информация передается по наследству и хранится во всех клетках живых организмов. Гены представляют собой сложные молекулярные структуры, содержащие информацию о строении живых организмов. Последнее обстоятельство позволило проводить научные эксперименты по клонированию, то есть созданию точных копий организмов из одной клетки. Информация в кибернетике. В кибернетике (науке об управлении) понятие «информация» связано с процессами управления в сложных системах (живых организмах или технических устройствах). Жизнедеятельность любого организма или нормальное функционирование технического устройства зависит от процессов управления, благодаря которым поддерживаются в необходимых пределах значения их параметров. Процессы управления включают в себя получение, хранение, преобразование и передачу информации. Социально значимые свойства информации. Человек - существо социальное, для общения с другими людьми он должен обмениваться с ними информацией, причем обмен информацией всегда производится на определенном языке — русском, английском и так далее. Участники дискуссии должны владеть тем языком, на котором ведется общение, тогда информация будет понятной всем участникам обмена информацией. Информация должна быть полезной, тогда дискуссия приобретает практическую ценность. Бесполезная информация создает информационный шум, который затрудняет восприятие полезной информации. Примерами передачи и получения бесполезной информации могут служить некоторые конференции и чаты в Интернете. Для того чтобы человек мог правильно ориентироваться в окружающем мире, информация должна быть полной и точной. Задача получения полной и точной информации стоит перед наукой. Овладение научными знаниями в процессе обучения позволяют человеку получить полную и точную информацию о природе, обществе и технике. Алфавитный подход к определению количества информации. При определении количества информации на основе уменьшения неопределенности наших знаний мы рассматриваем информацию с точки зрения содержания, ее понятности и новизны для человека. С этой точки зрения в опыте по бросанию монеты одинаковое количество информации содержится и в зрительном образе упавшей монеты, и в коротком сообщении «Орел», и в длинной фразе «Монета упала на поверхность земли той стороной вверх, на которой изображен орел». Однако при хранении и передаче информации с помощью технических устройств целесообразно отвлечься от содержания информации и рассматривать ее как последовательность знаков (букв, цифр, кодов цветов точек изображения и так далее). Так, в русском алфавите, если не использовать букву ё, количество событий (букв) будет равно 32. Тогда: 32 = 2I,откуда I = 5 битов. Билет№2 Информационные процессы. Компьютер — это электронный прибор, предназначенный для работы с информацией посредством автоматизированной регистрации, хранения, приема, передачи, обработки и воспроизведения данных. Понятие данных. Все явления природы сопровождаются энергетическим обменом. В его ходе тела выделяют и поглощают энергию. Энергетический обмен свойствен всем известным природным процессам: физическим, химическим, биологическим и их комбинациям. Энергия распространяется в форме сигналов. При взаимодействии сигналов с веществом происходит изменение состояний и свойств материальных тел. Если изменение зафиксировано, говорят о том, что произошла регистрация сигнала. Так образуются данные. Данные -это зарегистрированные сигналы любой физической природы. Текст на бумаге — это зарегистрированный результат взаимодействия бумаги и красителя. Запись на магнитной ленте — это зарегистрированные результаты изменения магнитного поля вблизи записывающей магнитной головки. Кратеры на Луне — это зарегистрированные результаты взаимодействия космических тел с ее поверхностью. Кратеры на Земле — это зарегистрированные результаты активности внутреннего вещества планеты. Информация. Когда говорят о том, что компьютеры предназначены для работы с информацией, имеют в виду, что информация содержится в данных. Компьютеры работают только с данными, а информация образуется в момент взаимодействия данных с информационными методами. Информационные методы. Чтобы получить информацию из данных, надо обладать соответствующими информационными методами. Некоторые информационные методы, основанные на органах чувств, свойственны большинству людей от рождения. К ним относятся: зрение, слух, осязание, обоняние и вкус. Некоторые информационные методы развиваются в процессе обучения, например чтение, знание языка общения, аналитическое мышление и др. Информационный метод определяет способ взаимодействия с данными с целью получения содержащейся в них информации. Роль информационных методов. Отсутствие необходимого информационного метода не позволяет получить информацию даже при наличии данных. Например, книга представляет собой набор данных, зафиксированных в типографии краской на бумаге. Чтобы получить из нее информацию, читатель должен обладать зрением, знанием русского языка и его азбуки, умением читать и мыслить логически, а также понимать использованные термины. Но даже и этот длинный перечень не представляет полный набор необходимых методов. Например, необходимо еще располагать естественным или искусственным методом для создания достаточной освещенности. Если хотя бы одного из перечисленных методов не хватает, то либо для него подбирают адекватную замену, либо данные, содержащиеся в книге, не станут информацией. Мы не случайно выделили слова адекватную замену. Например, если читатель книги не знаком с русским языком, то он может привлечь переводчика, но информация, которую он при этом получит, будет не совсем той, которую получит читатель, владеющий русским языком. То есть содержательная часть информации зависит как от содержательной части данных, так и от использованных информационных методов. Б2. Информационные процессы. Информация образуется в момент взаимодействия данных с информационными методами. Такое взаимодействие называется информационным процессом. Для человека частные информационные процессы сливаются в один общий непрерывный информационный процесс — он постоянно сопровождает общение людей с внешним миром, даже во сне. У объектов живой природы общий информационный процесс прекращается вместе с процессом обмена веществ, то есть после смерти. Процессы, связанные со сбором, хранением, поиском, обработкой, кодированием и передачей информации, называют информационными процессами. Технические устройства также могут участвовать в информационных процессах. Простейшие примеры: теле- и радиоприемники. Для них информационный процесс прекращается вместе с прекращением рабочего энергетического обмена, то есть после выключения устройства. Содержательная часть данных: сведения и команды. От содержательной части данных (хотя и не только от нее, но и от использованного информационного метода) зависит содержательная часть информации. Люди уделяют повышенное внимание содержательной части данных и различают в ней две составляющие: сведения и команды. Для человека сведения и команды достаточно близки. Например, перечень инструкций, описывающих порядок вычисления корней квадратного уравнения, можно рассматривать как совокупность команд, исполнение которых приводит к правильному решению, но можно рассматривать и как сведения о приемах решения уравнений. Для технических устройств различие между данными, содержащими сведения и команды, более существенно. Например, телевизионный приемник, принимающий сигналы из эфира или от видеомагнитофона, одновременно обрабатывает оба эти типа данных. Данные, содержащие сведения, он преобразует в форму, удобную для органов чувств человека, а данные, содержащие команды, используются для управления самим приемником. Естественные и искусственные информационные методы. Зрение, слух, мышление и другие информационные методы, относящиеся к биологическим объектам, считаются естественными. Некоторые из них свойственны только человеку, некоторые — всем живым организмам. Общими для живой природы являются генетические методы наследования, связанные с передачей информации от предков потомкам через данные, хранящиеся в цепочках ДНК. В тех случаях, когда человеку недостаточно естественных методов для работы с данными, он может использовать искусственные методы. Широко известно использование телескопов, микроскопов, радиоприемников, телевизионных приемников, магнитофонов и других устройств. Например, человек не обладает естественными органами чувств, способными регистрировать радиоволны. В этом случае он использует радиоприемник, с помощью которого получает информацию из данных, регистрируемых антенной. Аппаратные и программные информационные методы. Аппаратные информационные методы представлены техническими устройствами — приборами. Мы можем говорить о том, что микроскоп предоставляет человеку информационный метод для получения данных от объектов, не видимых невооруженным глазом. Реализован этот метод аппаратно. Так же аппаратно, с помощью приборов, реализованы методы прослушивания радиопередач и просмотра телевизионных передач. Компьютеры в информационных процессах. Важная особенность компьютеров, отличающая их от других приборов, предназначенных для работы с информацией, заключается в том, что современный компьютер использует все три класса информационных методов одновременно. Благодаря гибкости компьютеры могут взаимодействовать не только с человеком, но и с любыми другими техническими устройствами, в том числе и с другими компьютерами — так образуются компьютерные сети. Именно благодаря неограниченным возможностям работы с любыми устройствами компьютер и стал универсальным прибором, способным выполнять столь разнородные функции, как регистрация, хранение, обработка, прием, передача и воспроизведение данных.
Билет№3 Язык как знаковая система Для обмена информацией с другими людьми человек использует естественные языки (русский, английский, китайский и др.), то есть информация представляется с помощью естественных языков. В основе языка лежит алфавит, то есть набор символов (знаков), которые человек различает по их начертанию. В основе русского языка лежит кириллица, содержащая 33 знака, английский язык использует латиницу (26 знаков), китайский язык использует алфавит из десятков тысяч знаков (иероглифов). Последовательности символов алфавита в соответствии с правилами грамматики образуют основные объекты языка — слова. Правила, согласно которым образуются предложения из слов данного языка, называются синтаксисом. Необходимо отметить, что в естественных языках грамматика и синтаксис языка формулируются с помощью большого количества правил, из которых существуют исключения, так как такие правила складывались исторически. Наряду с естественными языками были разработаны формальные языки (системы счисления, язык алгебры, языки программирования и др.). Основное отличие формальных языков от естественных состоит в наличии строгих правил грамматики и синтаксиса. Например, системы счисления можно рассматривать как формальные языки, имеющие алфавит (цифры) и позволяющие не только именовать и записывать объекты (числа), но и выполнять над ними арифметические операции по строго определенным правилам. Некоторые языки используют в качестве знаков не буквы и цифры, а другие символы, например химические формулы, ноты, изображения элементов электрических или логических схем, дорожные знаки, точки и тире (код азбуки Морзе) и др. Знаки могут -иметь различную физическую природу. Например, для представления информации с использованием языка в письменной форме используются знаки, которые являются изображениями на бумаге или других носителях, в устной речи в качестве знаков языка используются различные звуки (фонемы), а при обработке текста на компьютере знаки представляются в форме последовательностей электрических импульсов (компьютерных кодов). Б4. Кодирование информации Представление информации происходит в различных формах в процессе восприятия окружающей среды живыми организмами и человеком, в процессах обмена информацией между человеком и человеком, человеком и компьютером, компьютером и компьютером и так далее. Преобразование информации из одной формы представления (знаковой системы) в другую называется кодированием. Средством кодирования служит таблица соответствия знаковых систем, которая устанавливает взаимно однозначное соответствие между знаками или группами знаков двух различных знаковых систем. В процессе обмена информацией часто приходится производить операции кодирования и декодирования информации. При вводе знака алфавита в компьютер путем нажатия соответствующей клавиши на клавиатуре происходит кодирование знака, то есть преобразование его в компьютерный код. При выводе знака на экран монитора или принтер происходит обратный процесс - - декодирование, когда из компьютерного кода знак преобразуется в его графическое изображение. Б4. Хранение информации Информация, закодированная с помощью естественных и формальных языков, а также информация в форме зрительных и звуковых образов хранится в памяти человека. Однако для долговременного хранения информации, ее накопления и передачи из поколения в поколение используются носители информации. Материальная природа носителей информации может быть различной: молекулы ДНК, которые хранят генетическую информацию; бумага, на которой хранятся тексты и изображения; магнитная лента, на которой хранится звуковая информация; фото- и кинопленки, на которых хранится графическая информация; микросхемы памяти, магнитные и лазерные диски, на которых хранятся программы и данные в компьютере, и так далее. По оценкам специалистов, объем информации, фиксируемой на различных носителях, превышает один эксабайт в год (1018 байт/год). Примерно 80% всей этой информации хранится в цифровой форме на магнитных и оптических носителях и только 20% — на аналоговых носителях (бумага, магнитные ленты, фото- и кинопленки). Носители информации характеризуются информационной емкостью, то есть количеством информации, которое они могут хранить. Наиболее информационно емкими являются молекулы ДНК, которые имеют очень малый размер и плотно упакованы. Это позволяет хранить огромное количество информации (до 1021 битов в 1 см3), что дает возможность организму развиваться из одной-единственной клетки, содержащей всю необходимую генетическую информацию. Современные микросхемы памяти позволяют хранить в 1 см3 до 1010 битов информации, однако это в 100 миллиардов раз меньше, чем в ДНК. Можно сказать, что современные технологии пока существенно проигрывают биологической эволюции. Однако если сравнивать информационную емкость традиционных носителей информации (книг) и современных компьютерных носителей, то прогресс очевиден. На каждом гибком магнитном диске может храниться книга объемом около 600 страниц, а на жестком магнитном диске или DVD - целая библиотека, включающая десятки тысяч книг. Большое значение имеет надежность и долговременность хранения информации. Большую устойчивость к возможным повреждениям имеют молекулы ДНК, так как существует механизм обнаружения повреждений их структуры (мутаций) и самовосстановления. Надежность (устойчивость к повреждениям) достаточно высока у аналоговых носителей, повреждение которых приводит к потери информации только на поврежденном участке. Поврежденная часть фотографии не лишает возможности видеть оставшуюся часть, повреждение участка магнитной ленты приводит лишь к временному пропаданию звука и так далее. Цифровые носители гораздо более чувствительны к повреждениям, даже утеря одного бита данных на магнитном или оптическом диске может привести к невозможности считать файл, то есть к потере большого объема данных. Именно поэтому необходимо соблюдать правила эксплуатации и хранения цифровых носителей информации. Наиболее долговременным носителем информации является молекула ДНК, которая в течение десятков тысяч лет (человек) и миллионов лет (некоторые живые организмы), сохраняет генетическую информацию данного вида. Аналоговые носители способны сохранять информацию в течение тысяч лет (египетские папирусы и шумерские глиняные таблички), сотен лет (бумага) и десятков лет (магнитные ленты, фото- и кинопленки). Цифровые носители появились сравнительно недавно и поэтому об их долговременности можно судить только по оценкам специалистов. По экспертным оценкам, при правильном хранении оптические носители способны хранить информацию сотни лет, а магнитные — десятки лет.
Билет№5 Гибкие магнитные диски.
Гибкие магнитные диски помещаются в пластмассовый корпус. Такой носитель информации называется дискетой. Дискета вставляется в дисковод, вращающий диск с постоянной угловой скоростью. Магнитная головка дисковода устанавливается на определенную концентрическую дорожку диска, на которую и записывается (или считывается) информация. Информационная ёмкость дискеты невелика и составляет всего 1.44 Мбайт. Скорость записи и считывания информации также мала (около 50 Кбайт/с) из-за медленного вращения диска (360 об./мин). В целях сохранения информации гибкие магнитные диски следует предохранять от воздействия сильных магнитных полей и нагревания, так как это может привести к размагничиванию носителя и потере информации. Жесткие магнитные диски. Жесткий диск (HDD — Hard Disk Drive) относится к несменным дисковым магнитным накопителям. Первый жесткий диск был разработан фирмой IBM в 1973 г. и имел емкость 16 Кбайт. Жесткие магнитные диски представляют собой несколько десятков дисков, размещенных на одной оси, заключенных в металлический корпус и вращающихся с высокой угловой скоростью. За счет множества дорожек на каждой стороне дисков и большого количества дисков информационная емкость жестких дисков может в десятки тысяч раз превышать информационную емкость дискет и достигать сотен Гбайт. Скорость записи и считывания информации с жестких дисков достаточно велика (около 133 Мбайт/с) за счет быстрого вращения дисков (7200 об./мин). Часто жесткий диск называют винчестер. Бытует легенда, объясняющая, почему за жесткими дисками повелось такое причудливое название. Первый жесткий диск, выпущенный в Америке в начале 70-х годов, имел емкость по 30 Мб информации на каждой рабочей поверхности. В то же время, широко известная в той же Америке магазинная винтовка О. Ф. Винчестера имела калибр - 0.30; может грохотал при своей работе первый винчестер как автомат или порохом от него пахло - не ясно, но с той поры стали называть жесткие диски винчестерами. В процессе работы компьютера случаются сбои. Вирусы, перебои энергоснабжения, программные ошибки - все это может послужить причиной повреждения информации, хранящейся на Вашем жестком диске. Повреждение информации далеко не всегда означает ее потерю, так что полезно знать о том, как она хранится на жестком диске, ибо тогда ее можно восстановить. Тогда, например, в случае повреждения вирусом загрузочной области, вовсе не обязательно форматировать весь диск (!), а, восстановив поврежденное место, продолжить нормальную работу с сохранением всех своих бесценных данных. В жестких дисках используются достаточно хрупкие и миниатюрные элементы. Чтобы сохранить информацию и работоспособность жестких дисков, необходимо оберегать их от ударов и резких изменений пространственной ориентации в процессе работы. Лазерные дисководы и диски. В начале 80-х годов голландская фирма «Philips» объявила о совершенной ею революцией в области звуковоспроизведения. Ее инженеры придумали то, что сейчас пользуется огромной популярностью - Это лазерные диски и проигрыватели. За последние несколько лет компьютерные устройства для чтения компакт-дисков (CD), называемые CD-ROM, стали практически необходимой частью любого компьютера. Это произошло потому, что разнообразные программные продукты стали занимать значительное количество места, и поставка их на дискетах оказалась чрезмерно дорогостоящей и ненадёжной. Поэтому их стали поставлять на CD (таких же, как и обычные музыкальные). Лазерные дисководы используют оптический принцип чтения информации. На лазерных дисках CD (CD — Compact Disk, компакт диск) и DVD (DVD — Digital Video Disk, цифровой видеодиск) информация записана на одну спиралевидную дорожку (как на грампластинке), содержащую чередующиеся участки с различной отражающей способностью. Лазерный луч падает на поверхность вращающегося диска, а интенсивность отраженного луча зависит от отражающей способности участка дорожки и приобретает значения 0 или 1. На лазерных дисках хранится информация, которая была записана на них в процессе изготовления. Запись на них новой информации невозможна. Производятся такие диски путем штамповки. Существуют CD-R и DVD-R диски информация на которые может быть записана только один раз. На дисках CD-RW и DVD-RW информация может быть записана/перезаписана многократно. Диски разных видов можно отличить не только по маркировки, но и по цвету отражающей поверхности. Запись на CD и DVD при помощи обычных CD-ROM и DVD-ROM невозможна. Для этого необходимы устройства CD-RW и DVD-RW с помощью которых возможны чтение-однократная запись и чтение-запись-перезапись. Эти устройства обладают достаточно мощным лазером, позволяющем менять отражающую способность участков поверхности в процессе записи диска. Информационная ёмкость CD-ROM достигает 700 Мбайт, а скорость считывания информации (до 7.8 Мбайт/с) зависит от скорости вращения диска. DVD-диски имеют гораздо большую информационную ёмкость (однослойный односторонний диск - 4.7 Гбайт) по сравнению с CD-дисками, т.к. используются лазеры с меньшей длинной волны, что позволяет размещать оптические дорожки более плотно. Так же существуют двухслойные DVD-диски и двухсторонние DVD-диски. В настоящее время скорости считывания 16-скоростных DVD-дисководов достигает 21 Мбайт/с. Б8. Запуск компьютера При поступлении сигнала о запуске процессор обращается к специально выделенной ячейке памяти. В ОЗУ в этот момент ничего нет, если бы там была какая-либо программа, то она начала бы выполнятся. Для того чтобы компьютер мог начать работу необходимо наличие специальной микросхемы – ПЗУ. Программы ПЗУ записываются на заводе и называются BIOS. После включения компьютера процессор начинает считывать и выполнять микрокоманды, которые хранятся в микросхеме BIOS. Прежде всего начинает выполнятся программа тестирования POST, которая проверяет работоспособность основных устройств компьютера. В случае неисправности выдаются определенные звуковые сигналы, а после инициализации видеоадаптера процесс тестирования отображается на экране монитора. Затем BIOS начитает поиск программы-загрузчика операционной системы. Программа-загрузчик помещается в ОЗУ и начинается процесс загрузки файлов операционной системы. Программы-оболочки Операционная система МS-DOS позволила успешно работать с персональными компьютерами на протяжении почти 15 лет. Тем не менее, эту работу нельзя назвать удобной. Во-первых, МS-DOS — неграфическая операционная система, которая использует интерфейс командной строки. Это значит, что все команды надо набирать по буквам в специальной строке. Требовалось хорошо знать эти команды, помнить, как они записываются. Изучение операционной системы стало самостоятельной задачей, достаточно сложной для простого пользователя. Когда-то МS-DOS выступила «посредником» между человеком и компьютером и помогла превратить сложные команды обращения к дискам в более простые и понятные, но по мере развития сама «обросла» изобилием команд и стала сдерживать работу с компьютером. Так возникла необходимость в новом посреднике — тогда появились так называемые программы-оболочки. Оболочка — это программа, которая запускается под управлением операционной системы и помогает человеку работать с этой операционной системой. Одна из самых известных и распространенных во всем мире программ-оболочек называется Norton Comander. Ее разработал известнейший американский программист Питер Нортон, получивший всемирное признание за то, что упростил работу с компьютером для миллионов людей. Программа-оболочка наглядно показывает на экране всю файловую структуру компьютера: диски, каталоги и файлы. С такой программой не надо набирать сложные команды МS-DOS в командной строке. Файлы можно разыскивать, копировать, перемещать, удалять, сортировать, изменять (редактировать, править) запускать, пользуясь всего лишь нескольким клавишами. Просто, понятно и удобно. Сегодня Norton Comander все еще используют на многих компьютерах, особенно на тех, которые работают в системе МS-DOS. Правда, она все-таки устарела. Сейчас для работы с принято использовать более современные средства Графические оболочки Несмотря на то, что появление программ-оболочек заметно упростило работу с компьютером и его операционной системой, оболочки все-таки долгое время оставались неграфическими. Одна из особенностей компьютеров IВМ РС состоит в том, что в них текстовый и графический режим работы с экраном существуют отдельно. Компьютер переключается либо в тот режим, либо в другой. Нельзя, например, сделать так, чтобы часть экрана была в текстовом режиме, а часть — в графическом. Эти режимы несовместимы. Работа с текстовым экраном долгое время была вполне приемлема для служебных целей. На многих предприятиях и в организациях не было необходимости в работе с графикой, а если такая потребность возникала, для этого было принято использовать компьютеры Macintosh. Однако когда встал вопрос об использовании IВМ РС в качестве домашнего компьютера, возникла острая необходимость в графической операционной системе, которая наглядно выводит информацию на экран и которой можно управлять с помощью мыши. Работы над графической операционной системой для IВМ РС в компании Microsoft начались еще в 1981 г., но впервые такая система вышла в свет только в 1995 г. под названием Microsoft Windows 95. До появления Microsoft Windows 95 компьютеры IВМ РС работали с неграфической системой МS-DOS, но для нее были сделаны несколько графических оболочек Windows 1.0, Windows 2.0, Windows 3.0, Windows 3.1,, Windows 3.11. Оболочки Windows запускались под управлением МS-DOS, то есть не были самостоятельными операционными системами. Но поскольку с появлением Windows открылись некоторые новые возможности, все-таки принято называть Windows не оболочкой, а средой. Вот некоторые особенности Windows, отличающие эту среду от прочих оболочек: · Многозадачность. · Единый программный интерфейс. · Единый интерфейс пользователя. · Графический интерфейс пользователя. · Единый аппаратно-программный интерфейс. Файл. Все программы и данные хранятся в долговременной (внешней) памяти компьютера в виде файлов. Файл — это определенное количество информации (программа или данные), имеющее имя и хранящееся в долговременной (внешней) памяти. Имя файла состоит из двух частей, разделенных точкой: собственно имя файла и расширение, определяющее его тип (программа, данные и т. д.). Собственно имя файлу дает пользователь, а тип файла обычно задается программой автоматически при его создании.
В различных операционных системах существуют различные форматы имен файлов. В операционной системе MS-DOS собственно имя файла должно содержать не более восьми букв латинского алфавита и цифр, а расширение состоит из трех латинских букв, например: proba.txt В операционной системе Windows имя файла может иметь до 255 символов, причем допускается использование русского алфавита, например: Файловая система. На каждом носителе информации (гибком, жестком или лазерном диске) может храниться большое количество файлов. Порядок хранения файлов на диске определяется установленной файловой системой. Файловая система - это система хранения файлов и организации каталогов. Для дисков с небольшим количеством файлов (до нескольких десятков) удобно применять одноуровневую файловую систему, когда каталог (оглавление диска) представляет собой линейную последовательность имен файлов. Если на диске хранятся сотни и тысячи файлов, то для удобства поиска файлы организуются в много уровневую иерархическую файловую систему, которая имеет «древовидную» структуру. Начальный, корневой, каталог содержит вложенные каталоги 1-го уровня, в свою очередь, в каждом из них бывают вложенные каталоги 2-го уровня и т. д. Необходимо отметить, что в каталогах всех уровней могут храниться и файлы. Б9. Путь к файлу. Для того чтобы найти файл в иерархической файловой структуре необходимо указать путь к файлу. В путь к файлу входят записываемые через разделитель "\" логическое имя диска и последовательность имен вложенных друг в друга каталогов, в последнем из которых находится данный нужный файл. Например, путь к файлам на рисунке можно записать так: C:\basic\ C:\Музыка\Пикник\ Полное имя файла. Путь к файлу вместе с именем файла называют полным именем файла. Пример полного имени файлов: C:\basic\prog123.bas C:\Музыка\Пикник\Иероглиф.mp3 Операции над файлами. В процессе работы на компьютере над файлами чаще всего производятся следующие операции: копирование (копия файла помещается в другой каталог); перемещение (сам файл перемещается в другой каталог); удаление (запись о файле удаляется из каталога); переименование (изменяется имя файла). Б10. Кодирование информации С появлением языка, а затем и знаковых систем расширились возможности общения между людьми. Это позволило хранить идеи, полученные знания и любые данные, передавать их различными способами на расстояние и в другие времена — не только своим современникам, но и будущим поколениям. До наших дней дошли творения предков, которые с помощью различных символов увековечили себя и свои деяния в памятниках и надписях. Наскальные рисунки (петроглифы) до сих пор служат загадкой для ученых. Возможно, таким способом древние люди хотели вступить в контакт с нами, будущими жителями планеты и сообщить о событиях их жизни. Каждый народ имеет свой язык, состоящий из набора символов (букв): русский, английский, японский и многие другие. Вы уже познакомились с языком математики, физики, химии. Представление информации с помощью какого-либо языка часто называют кодированием. Код — набор символов (условных обозначений) дли представления информации. Кодирование — процесс представления информации в виде кода. Водитель передает сигнал с помощью гудка или миганием фар. Кодом является наличие или отсутствие гудка, а в случае световой сигнализации — мигание фар или его отсутствие. Вы встречаетесь с кодированием информации при переходе доро
|
||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 427; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.225.188 (0.024 с.) |