Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Дисперсия оптических волокон.Содержание книги
Поиск на нашем сайте
Общие положения Дисперсией оптического волокна называют рассеяние во времени спектральных или модовых составляющих оптического сигнала. Основная причина дисперсии – разные скорости распространения отдельных составляющих оптического сигнала. Дисперсия проявляется как уширение, увеличение длительности распространяющихся по волокну оптических импульсов. В общем случае указанная величина уширения оптического импульса Ds определяется непосредственно значениями среднеквадратической длительности на передающей sin и sout, соответственно:
В свою очередь дисперсия создает переходные помехи, приводит к межсимвольной интерференции и, соответственно, ошибкам при приеме сигналов, что ограничивает скорость передачи в линии или, иными словами, длину регенерационного участка (РУ). Межмодовая дисперсия
Межмодовая дисперсия характерна только для многомодовых оптических волокон. Она возникает в многомодовых световодах из-за наличия большого числа мод с различным временем распространения за счет различной длины пути, который отдельные моды проходят в сердцевине волокна (рис. 1.10 – 1.11). Полоса пропускания типовых градиентных многомодовых оптических волокон характеризуется коэффициентом широкополосности DF, МГц∙км, значение которого указывается в паспортных данных на длинах волн, соответствующих первому и второму окнам прозрачности. Стандартные полосы пропускания типовых многомодовых оптических волокон составляют 400…2000 МГц∙км. Реализация высокоскоростных многомодовых ВОЛП требует применения одномодовых лазеров в качестве источников излучения оптоэлектронных модулей ОСП, обеспечивающих скорость передачи данных свыше 622 Мбит/с (STM-4). В свою очередь, основным фактором искажения оптических сигналов одномодовых ОСП, распространяющихся по волокнам многомодовых ВОЛП является уже не многомодовая дисперсия, а дифференциальная модовая задержка (DMD). DMD носит случайный характер и зависит непосредственно от параметров конкретной пары «источник–волокно», а также от условий ввода излучения с выхода лазера в линейный тракт многомодовой ВОЛП. Поэтому в паспортных данных на новый тип многомодовых волоконных световодов – волокон, оптимизированных для работы с лазерами – помимо значений коэффициента широкополосности, позволяющего оценить величину межмодовой дисперсии при передаче сигналов многомодовых ОСП по многомодовым ВОЛП, также указываются дополнительные сведения, полученные в результате измерений DMD в процессе изготовления волокна, – например, предельная длина ЭКУ одномодовой ОСП Gigabit Ethernet.
Очевидно, что в одномодовых волоконных световодах межмодовая дисперсия не проявляется. Одними из основных факторов искажений сигналов, распространяющихся по одномодовым оптическим волокнам являются хроматическая и поляризационная модовая дисперсии. Хроматическая дисперсия Хроматическая дисперсия Dch обусловлена конечной шириной спектра излучения лазера и различием скоростей распространения отдельных спектральных составляющих оптического сигнала. Хроматическая дисперсия складывается из материальной и волноводной дисперсии, и проявляется как в одномодовых, так и многомодовых оптических волокнах:
Материальная дисперсия Материальная дисперсия Dmat определяется дисперсионными характеристиками материалов, из которых изготовлена сердцевина оптического волокна – кварца и легирующих добавок. Спектральная зависимость показателя преломления материала сердцевины и оболочки (рис. 1.24) вызывает изменения с длиной волны и скорости распространения. Достаточно часто данная зависимость описывается известным уравнением Селлмейера, которое имеет следующий вид [48, 49]:
где Aj и Bj – коэффициенты Селлмейера, соответствующие заданному типу материала, легирующей примеси и ее концентрации.
Очевидно, что эту характеристику для кварцевых волокон можно считать неизменной. Материальная дисперсия характеризуется коэффициентом Dmat пс/(нм.км), который определяется из известного соотношения:
В качестве примера, на рис. 1.25 представлены спектральные характеристики коэффициентов материальной дисперсии чистого кварца и кварца, легированного 13,5% германия. Очевидно, что характер проявления материальной дисперсии зависит не только от ширины спектра излучения источника, но и от его центральной рабочей длины волны. Так, например, в области третьего окна прозрачности l =1550 нм менее длинные волны распространяются быстрее, чем более длинные, а материальная дисперсия больше нуля (Dmat >0). Данный диапазон получил название области нормальной или положительной дисперсии (рис. 1.26 (б)). В области первого окна прозрачности l =850 нм, напротив, более длинные волны распространяются быстрее, чем короткие, а материальной дисперсии соответствует отрицательное значение (Dmat <0). Данный диапазон называется областью аномальной или отрицательной дисперсии (рис. 1.26 (в)).
В некоторой точке спектра, называемой точкой нулевой материальной дисперсии l0, происходит совпадение, при этом и короткие, и длинные волны распространяются с одинаковой скоростью (рис. 1.26 (г)). Так, например, для чистого кварца SiO2 точка нулевой материальной дисперсии соответствует длине волны 1280 нм (рис. 1.25). Волноводная дисперсия Волноводная дисперсия Dw обусловлена зависимостью групповой скорости распространения моды от длины волны, характер которой определяется формой профиля показателя преломления оптического волокна. Указанная зависимость определяется пространством, занимаемым модой по отношению к профилю показателя преломления волокна. Так, в ряде случаев в световодах с большим диаметром сердцевины волноводной дисперсией можно пренебречь. В одномодовых оптических волокнах из-за малого радиуса сердцевины, напротив, волноводная дисперсия достаточно велика. Достаточно часто для оценки волноводной дисперсии используют следующее соотношение [48]:
где V – нормированная частота, значение которой определяется по формуле (1.11); b – нормированная постоянная распространения, которая связана с b следующим соотношением:
при этом составляющая формулы (1.29) получила название нормированный параметр волноводной дисперсии. Спектральные характеристики хроматической дисперсии одномодовых оптических волокон действующих рекомендаций МСЭ-Т
Результирующее значение хроматической дисперсии Dch, которое складывается из материальной Dmat и волноводной Dw составляющих (1.27), непосредственно связано с первой и второй производной постоянной распространения следующим соотношением [48]:
Очевидно, что подбор профиля показателя преломления позволяет соответствующим образом изменить итоговую спектральную характеристику хроматической дисперсии. Так, в волокнах SSF, которые характеризуются типовым ступенчатым профилем показателя преломления, преобладает положительная материальная дисперсия, которая и формирует минимум хроматической дисперсии в области длины волны 1300 нм (рис. 1.27, 1.28) [48, 50].
Профили показателя преломления волокон DSF и NZDSF сформированы таким образом, чтобы компенсировать материальную дисперсию отрицательной волноводной. В волокнах DSF при сложении материальной и волноводной составляющих дисперсии длина волны нулевой дисперсии смещается в область третьего окна прозрачности l =1550 нм. Для волокон NZDSF длина волны нулевой дисперсии не нормируется. Она обычно находится за пределами диапазона длин волн третьего окна прозрачности (диапазона C).
|
||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 1131; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.218.119.140 (0.011 с.) |