Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Рациональное использование технологических участковСодержание книги Поиск на нашем сайте
2.5. Предприятию требуется за 30 дней выпустить 400 единиц Продукта1, 350 единиц Продукта2 и 800 единиц Продукта3. Продукция производится на трех различных технологических участках. Производительность каждого участка по каждому продукту (количество единиц продукции j-го вида j= , которое можно произвести на i-м участке i= в день) приведена в таблице. Известны затраты на производство j-го продукта на i-м участке в день (см. табл.). Требуется составить оптимальный план работы участков, т.е. найти сколько времени i-й участок будет занят производством j-го продукта с тем, чтобы общие издержки были наименьшими.
Затраты на производство продукции (руб. в день)
Математическая модель задачи выглядит следующим образом. Целевая функция имеет вид: 230× x11+190× x12+140× x13+230× x21+180× x22+130× x23+190× x31+140× x32+100× x33® min, Ограничения имеют вид: x11+x12+x13£ 30, x21+x22+x23£ 30, x31+x32+x33£ 30, 20× x11+14× x21+12× x31=400, 20× x12+15× x22+11× x32=350, 15× x13+20× x23+15× x33=800, xij³ 0, i, j= . Вид электронной таблицы Excel, созданной для решения задачи, представлен на рис. 28. Значения переменных xij располагаются в блоке ячеек B3:D5 (см. рис. 28). Коэффициенты целевой функции, отражающие затраты на производство продукции в единицу времени находятся по адресам B15:D17. Данные о производительности участков находятся в блоке B10:D12. Требования к планируемому объему выпуска каждого продукта заданы в ячейках B6:D6. Заданное время работы участков введено в E10. Рис. 28 Рис. 29 Формулы целевой функции и ограничений находятся соответственно в ячейке E7 и ячейках B7:D7 (ограничения по плану), E3:E5 (ограничения по времени) (см. рис. 28 и 29). Вид электронной таблицы в режиме отображения формул представлен на рис. 29. Запись условий задачи в окне "Поиск решения" можно увидеть на рис. 30. Результаты поиска решения приведены на рис. 28. Рис. 30
Закрепление самолетов за воздушными линиями Три типа самолетов требуется распределить между четырьмя авиалиниями. В приводимых ниже таблицах задано число самолетов каждого типа, месячный объем перевозок каждым самолетом на каждой авиалинии и соответствующие эксплуатационные расходы. Требуется распределить самолеты по авиалиниям так, чтобы при минимальных суммарных эксплуатационных расходах перевезти по каждой из четырех авиалиний соответственно не менее 300, 200, 1000 и 500 единиц груза.
Математическая модель задачи выглядит следующим образом. Целевая функция имеет вид: 15× x11+20× x12+25× x13+40× x14+70× x21+28× x22+15× x23+45× x24+40× x31+70× x32+40× x33+65× x34® min, Ограничения имеют вид: 15× x11+30× x21+25× x31³ 300, 10× x12+25× x22+50× x32³ 200, 20× x13+10× x23+30× x33³ 1000, 50× x14+17× x24+45× x34³ 500, x11+x12+x13+x14=50, x21+x22+x23+x24=20, x31+x32+x33+x33=30, xij³ 0, целые (i= , j= ). Вид электронной таблицы Excel, созданной для решения задачи, представлен на рис. 31. Значения переменных xij располагаются в блоке ячеек B4:E6 (см. рис. 31). Коэффициенты целевой функции, отражающие расходы на перевозку находятся по адресам B18:E20. Данные о месячных объемах перевозок одним самолетом имеются в блоке B12:E14. Задан план перевозок и число самолетов- соответственно блоки B7:E7 и F4:F6. Рис. 31 Формулы целевой функции и ограничений находятся соответственно в ячейке F8 и ячейках B8:E8 (ограничения по плану), F4:F6 (ограничения по количеству самолетов) (см. рис. 31 и 32). Вид электронной таблицы в режиме отображения формул представлен на рис. 32. Рис. 32 Рис. 33 В группе Ограничения (см. рис. 33) заданы, помимо остальных, ограничения на целочисленность переменных (первая запись), означающие, что количество выбранных самолетов (значения xij) должно быть целым числом. Задание ограничения на целочисленность увеличивает время вычислений Поиска решения. Результаты поиска решения приведены на рис. 31.
Задача о ранце
В грузовую автомашину надо поместить четыре вида предметов, причем могут потребоваться несколько одинаковых предметов. Имеется три вида ограничений такого типа, как вес, объем и т.д. В приведенной ниже таблице даны aij- i-я характеристика предмета j-го наименования, cj- полезность одного предмета j-го наименования (i= , j= ). Требуется загрузить машину так, чтобы суммарная полезность груза была максимальной.
Математическая модель задачи выглядит следующим образом. Целевая функция имеет вид: 3× x1+4× x2+3× x3+3× x4® max, Ограничения имеют вид: 3× x1+3× x2+5× x3+2× x4£ 1000, 4× x1+2× x2+4× x3+4× x4£ 600, 3× x1+5× x2+4× x3+3× x4£ 600, xj³ 0, целые, j= . Вид электронной таблицы Excel, созданной для решения задачи, представлен на рис. 34. Значения переменных xij располагаются в блоке ячеек B3:E3 (см. рис. 34). Коэффициенты целевой функции, отражающие полезности предметов находятся по адресам B6:E6. Данные о характеристиках предметов имеются в блоке B9:E11. Заданы значения ограничений- соответственно блок H9:H11. Рис. 34 Формулы целевой функции и ограничений находятся соответственно в ячейке F6 и ячейках F9:E11 (ограничения по свойствам) (см. рис. 34 и 35). Вид электронной таблицы в режиме отображения формул представлен на рис. 35. Запись условий задачи в окне "Поиск решения" можно увидеть на рис. 36. Результаты поиска решения приведены на рис. 34. Рис. 35 Рис. 36
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-23; просмотров: 400; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.219.25.226 (0.009 с.) |