Углекислотная конверсия метана, применяемые катализаторы. Парциальное окисление метана. Новые модификации процесса получения синтез-газа 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Углекислотная конверсия метана, применяемые катализаторы. Парциальное окисление метана. Новые модификации процесса получения синтез-газа



¯ Углекислотная конверсия.

Используется в промышленности гораздо реже паровой. Однако этот метод позволяет получать синтез-газ с мольным отношением СО: Н2=1:1. Газ такого состава нужен для гидроформилирования, получения формальдегида или поликарбонатов. Используя комбинацию углекислотной и паровой конверсии, можно получать синтез-газ практически любого состава.

Углекислотная конверсия позволяет также вовлекать в синтез диоксид углерода, запасы которого огромны, а масштабы использования в промышленности невелики (в основном для производства соды, мочевины и салициловой кислоты), поэтому расширение числа синтезов на основе СО2 – перспективное направление развития газохимии.

Углекислотная конверсия метана протекает с бо́льшим поглощением тепла, чем паровая конверсия. Селективности и конверсии, близкие к 100%, достигаются при 1000-1100°С. При температуре ниже 640°С равновесие реакции сдвинуто в сторону образования СН4 + СО2 (протекает метанирование СО).

Помимо основной реакции при углекислотной конверсии метана протекает реакция образования углерода:

СН4+ 2СО2 С + 2СО + Н2О (DН = +641 кДж/моль),

Эта реакция является эндотермической и протекает при высоких температурах.

Катализаторыуглекислотной конверсии метана - металлы и их оксиды.

Из числа металлических катализаторов наибольшую активность проявляют металлы VIII группы. Она снижается в ряду: Rh>Pt>Pd~Ir>Ru. Они также менее подвержены зауглероживанию. Активность благородных металлов определяется примененным носителем, способствующим их диспергации на поверхности. Активность катализаторов, содержащих один и тот же металл и разные оксиды в углекислотной конверсии метана уменьшается в ряду Al2O3>ThO2>SiO2>MgO, соответствующем изменению кислотности носителя, способствующей образованию более мелких кристаллитов металла. Из неблагородных металлов наибольшей активностью характеризуется никель. Однако повышение температуры синтеза приводит к его закоксовыванию. Снизить этот эффект возможно, добавляя небольшие количества благородных металлов (~0,01-2%) к никелевому катализатору.

В качестве оксидных катализаторов можно использовать индивидуальные (например, MgO, СеО2) и смешанные оксиды.

¯ Парциальное окисление метана.

При этом методе используют никелевые катализаторы, работающие при атмосферном давлении и температуре 750-900°С. В разных слоях реактора наблюдается:

- в верхних слоях - экзотермическую реакцию глубокого окисления

СН4 + 2О2 СО2 + Н2О (DН = -802 кДж.моль)

- в нижних слоях - эндотермическую реакцию углекислотной конверсии

СН4 + СО2 2СО + 2Н2 (DН = +261 кДж.моль)

К недостаткам метода можно отнести:

-высокую стоимость кислорода (~50% от общей величины),

-взрывоопасность,

-возможность разрушения катализатора за счет локальных перегревов,

-возможность образования углерода за счет газофазных реакций.

Парциальное окисление метана в синтез-газ благоприятно во всем интервале температур и могло бы дать 100%-ную конверсию, если бы не другие реакции, в частности, конверсия водяного газа и ее обратная реакция (гидрирование СО2), а также реакции окисления метана:

СН4 + О2 СО2 + Н2

СН4 + 1,5О2 СО + 2Н2О.

Наиболее полная конверсия метана при мольном отношении СН42=2:1 достигается при температуре выше 750°С.

Различают парциальное окисление метана в объеме (гомогенное окисление) и на катализаторе.

Гомогенное окисление метана является единственным промышленным процессом получения синтез-газа парциальным окислением. Этот процесс некаталитический. Реакция протекает при температуре 1100-1300°С до достижения термодинамического равновесия. После удаления Н2S и СО2 синтез-газ имеет состав СО:Н2=1:2.

Каталитическое окисление метана может быть использовано для понижения температуры процесса. Как и в паровой конверсии, для этой цели могут использоваться никелевые катализаторы.

Парциальное окисление при малом времени контакта. Высокие объемные скорости (10000 ч-1 и выше) обеспечивают хорошее смешение и минимальное влияние массопереноса. Малое время контакта может быть достигнуто при пропускании реакционной смеси через керамические блоки с нанесенным на них металлом - катализатором или через металлические сетки.

Малое время контакта (от 10-5 до 10-1 с) позволяет осуществлять процесс с высокой селективностью по синтез-газу (выше 90%) при почти полной конверсии метана. В этом случае метан окисляется по "прямому" механизму, минуя реакции глубокого окисления, паровой и углекислотной конверсии, которые требуют большего времени контакта. Такое проведение процесса является более перспективным, поскольку позволяет сократить размеры аппарата и, возможно, снизить тепловые нагрузки.

¯ Новые модификации процесса получения синтез-газа.

В последнее время разработан ряд новых модификаций процесса получения синтез-газа с заданными соотношениями оксида углерода и водорода.

Комбинируя реакции паровой и кислородной конверсии метана можно получить смесь СО+Н2 с отношением от 2 до 3. Поскольку первая реакция – эндотермическая, а вторая – экзотермическая, можно получить термически нейтральный процесс, то есть получать синтез-газ из смеси СН42О+О2. Датская фирма «Халдор Топсе» предложила комбинацию некаталитического парциального окисления и паровой конверсии в одном автотермическом реакторе. Сначала в керамической трубе происходит гомогенная реакция при 900-1150°С (температура в зоне горения до 1900°С) вплоть до термического равновесия. Затем при той же температуре на никелевом катализаторе протекает паровая конверсия метана. Тепло, необходимое для паровой конверсии, поступает посредством теплообмена из реактора парциального окисления. Процесс характеризуется низким потреблением кислорода (О2:СН4=0,6). Некоторый избыток пара предотвращает образование углерода. Регулируя состав входящего газа, можно добиться отношения Н2:СО=2, необходимого для синтеза метанола или углеводородов.

На новых аммиачных заводах вместо паровой конверсии метана используют сдвоенные реакторы. В обогреваемом реакторе при 700°С и 4 МПа ~75% метана в смеси с водяным паром превращается в синтез-газ. Теплота этого процесса поставляется газами из второго реактора, в котором не превращенный метан из первого реактора взаимодействует с кислородом.

В России разработана технология получения синтез-газа в газогенераторах и камерах сгорания, используемых для жидкостно-реактивных ракетных двигателей. Эта технология требует применения технически чистого кислорода и повышенного давления. Процесс получения синтез-газа в метановых генераторах, созданных на принципах и с использованием реактивных двигательных технологий и прошедших опытную проверку, позволяет обеспечить наиболее высокую производительность, наименьшие габариты, массу, расход металла и капиталоемкость по сравнению с другими технологиями получения синтез-газа.

Одним из перспективных направлений совершенствования технологий получения синтез-газа является использование керамических мембран. Преимущество этой технологии в ее простоте и, следовательно, дешевизне. Керамические мембраны имеют каталитический эффект. С их помощью может быть также организовано выделение кислорода из воздуха. Учитывая перспективность мембранных технологий. В последние годы разработаны и внедряются мембранные методы регулирования соотношения СО:Н2 в синтез-газе с применением избирательно проницаемых для водорода полимерных мембран. Это соотношение имеет большое значение для дальнейшей переработки синтез-газа. Например, для производства метанола требуется синтез-газ с соотношением СО/Н2 = 1:2. Используются, в основном, три типа мембран:

-полисульфоновые мембраны.

-поливинилтриметилсилановые.

-полиимидные.

 

 



Поделиться:


Последнее изменение этой страницы: 2016-04-23; просмотров: 1086; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.128.78.41 (0.008 с.)