Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
В чем заключается физический смысл компенсации реактивной мощности ? Докажите экономическую целесообразность компенсации реактивной мощности.↑ Стр 1 из 9Следующая ⇒ Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
В чем заключается физический смысл компенсации реактивной мощности? Докажите экономическую целесообразность компенсации реактивной мощности. Нагрузка принимает и отдает в сеть практически всю энергию, при этом возникает ситуация, в которой потребитель вынужден оплачивать энергию, которая не была использована фактически. В противоположность индуктивным элементам, емкостные элементы (например, конденсаторы) стремятся сохранять неизменным напряжение на своих зажимах, то есть для них ток «опережает» напряжение. Поскольку величина потребляемой электроэнергии никогда не является постоянной и может меняться в существенном диапазоне за достаточно малый промежуток времени, то, соответственно, может изменяться и соотношение активной потребляемой энергии к полной (cosφ). При этом чем меньше активная нагрузка потребителя, тем меньше значение cosφ. Из этого следует, что для компенсации реактивной мощности необходимо оборудование, обеспечивающее регулирование cosφ в зависимости от изменяющихся условий работы оборудования - то есть применение установок компенсации реактивной мощности (УКРМ), состоящих, как правило, из батарей емкостных элементов (конденсаторов), коммутационного оборудования и устройств управления. Принцип работы УКРМ заключается в подключении к сети необходимого в данный момент времени количества конденсаторов для известного мгновенного значения реактивной мощности. Экономическая целесообразность. а) за счет компенсации происходит снижение полной мощности и тока; увеличивается пропускная способность линий и трансформаторов; снижается сечение проводов и мощности трансформаторов: б) за счет установки компенсирующих устройств происходит снижение потерь мощности: в) снижаются потери электроэнергии: г) снижаются потери напряжения:
Конструктивное выполнение электрических сетей, назначение и обл. прим. Электрическая сеть — совокупность подстанций, распределительных устройств и соединяющих их линий электропередачи, предназначенная для передачи и распределения электрической энергии. Конструктивное выполнение электрических сетей: Для выполнения электрических сетей применяются неизолированные (голые) и изолированные провода, кабели, токопроводы. Голые провода не имеют изолирующего покрова. Их можно прокладывать только в условиях, исключающих случайные прикосновения к ним людей, что может привести к замыканию. Наибольшее распространение голые провода получили на воздушных линиях, расположенных на открытом воздухе. Провода подвешиваются к опорам при помощи изоляторов и арматуры. Назначение, область применения: Сети общего назначения: электроснабжение бытовых, промышленных, сельскохозяйственных итранспортных потребителей. Сети автономного электроснабжения: электроснабжение мобильных и автономных объектов (транспортные средства, суда, самолёты, космические аппараты, автономные станции, роботы и т. п.) Сети технологических объектов: электроснабжение производственных объектов и других инженерных сетей. Контактная сеть: специальная сеть, служащая для передачи электроэнергии на движущиеся вдоль неё транспортные средства (локомотив, трамвай, троллейбус, метро).
Конструкция Основой МГЛ является РТ (горелка), обычно изготавливаемая из кварцевого стекла. В последние годы всё более широкое распространение получают МГЛ с РТ из специальной керамики. Преимуществом керамических горелок является их более высокая термостойкость. В большинстве конструкций МГЛ горелка помещается во внешнюю колбу, играющую двоякую роль. Во-первых, внешняя колба обеспечивает нормальный тепловой режим РТ, уменьшая её теплопотери. Во-вторых, стекло колбы выполняет функции светофильтра, сильно обрезающего жёсткое УФ излучение горелки. Для изготовления внешних колб МГЛ используется боросиликатное стекло, механически и термически устойчивое, относящееся по температурному коэффициенту линейного расширения (ТКЛР) к группе вольфрамовых стёкол. МГЛ, предназначенные для использования в технологических процессах, как правило, внешней колбы не имеют, что обусловлено необходимостью эффективного использования их УФ излучения. С целью уменьшения озонообразования иногда для таких МГЛ используют безозонное кварцевое стекло, значительно ослабляющее выход резонансной линии ртути 185 нм. МГЛ могут изготавливаться в одно- и двухцокольном (софитном) исполнении (последние предназначены для работы только в горизонтальном положении). Номенклатура используемых цоколей чрезвычайно широка и постоянно расширяется в связи с разработкой новых моделей ламп, предназначенных для специфических условий применения. Некоторые модели ламп, в основном, предназначенные для замены ламп типа ДРЛ, имеют на внутренней стороне внешней колбы слой люминофора. Применение Основные области применения: утилитарное, декоративное и архитектурное наружное освещение, осветительные установки (ОУ) промышленных и общественных зданий, сценическое и студийное освещение, ОУ для освещения больших открытых пространств (железнодорожные станции, карьеры и т. п.), освещение спортивных объектов и др
Основные световые величины Светова́я величина́ — редуцированная фотометрическая величина, образованная из энергетической фотометрической величины при помощи относительной спектральной чувствительности специального вида — относительной спектральной световой эффективности монохроматического излучения для дневного зрения [1]. От энергетических световые величины отличаются тем, что характеризуют свет с учетом его способности вызывать у человека зрительные ощущения. Образуют систему световых фотометрических величин. Сила света - пространственная плотность светового потока, равная отношению светового потока к величине телесного угла, в котором равномерно распределено излучение. • Единицей силы света является кандела. Освещенность - поверхностная плотность светового потока, падающего на поверхность, равная отношению светового потока к величине освещаемой поверхности, по которой он равномерно распределен. • Единицей освещенности является люкс (лк), равный освещенности, создаваемой световым потоком в 1 лм, равномерно распределенным на площади в 1 м2, т. е. равный 1 лм/1 м2. Яркость - поверхностная плотность силы света в заданном направлении, равная отношению силы света к площади проекции светящейся поверхности на плоскость, перпендикулярную тому же направлению. • Единица яркости - кандела на квадратный метр (кд/м2). Светимость (светность) - поверхностная плотность светового потока, испускаемого поверхностью, равная отношению светового потока к площади светящейся поверхности. • Единицей светимости является 1 лм/м2. Поток излучения: , (2.2.2) – это поток, который излучается источником с силой света в телесном угле : Освещенность: , (2.2.3) – освещенность такой поверхности, на каждый квадратный метр которой равномерно падает поток в . Светимость:
За единицу светимости принимают светимость такой поверхности, которая излучает с световой поток, равный . Яркость:
За единицу яркости принята яркость такой плоской поверхности, которая в перпендикулярном направлении излучает силу света с .
25. Основные требования, предъявляемые к предохранителям, устройство и особенности выбора плавких вставок в сетях 380-500 В. К предохранителям предъявляются следующие требования: 1.Времятоковая характеристика предохранителя должна проходить ниже, но возможно ближе к времятоковой характеристике защищаемого объекта. 2.При коротком замыкании предохранители должны работать селективно. 3.Время срабатывания предохранителя при коротком замыкании должно быть минимально возможным, особенно при защите полупроводниковых приборов. Предохранители должны работать с токоограничением. 4.Характеристики предохранителя должны быть стабильными. Разброс параметров из-за производственных отклонений не должен нарушать защитные свойства предохранителя. 5.В связи с возросшей мощностью установок предохранители должны иметь высокую отключающую способность. 6.Замена сгоревшего предохранителя или плавкой вставки не должна требовать много времени. Плавкий предохранитель состоит из плавкой вставки и патрона, в который устанавливается плавкая вставка, которая может заменяться при перегорании. Плавкая вставка внутри патрона помещается в специальную дугогогасящую среду. Предохранители для защиты полупроводниковых элементов (быстродействующие) имеют дополнительные элементы конструкции для ускорения срабатывания: Ускорение срабатывания предохранителя производится также использованием металлургического эффекта. К выбору предохранителей, защищающих электродвигатели напряжением 380 и 500 В, предъявляется дополнительное требование, чтобы время перегорания плавкой вставки не превышало 0,15—0,2 с.Это требование определяется следующими соображениями: на электродвигателях 380 и 500 В последовательно с плавкими предохранителями устанавливаются контакторы и магнитные пускатели, с помощью которых осуществляются пуск и остановка электродвигателей. Эти аппараты удерживаются во включенном положении специальными электромагнитами, которые питаются от напряжения сети. При исчезновении или понижении напряжения, например, вследствие короткого замыкания магнитные пускатели и контакторы отпадают. При коротком замыкании в электродвигателе плавкая вставка должна перегореть раньше, чем отпадет магнитный пускатель или контактор. В противном случае контакты магнитного пускателя или контактора будут размыкать ток короткого замыкания, на что они не рассчитаны. Как показали специальные испытания и опыт эксплуатации, если время перегорания плавкой вставки не превышает 0,15—0,2 с, то может происходить лишь небольшое оплавление контактов, позволяющее вновь включить контактор. Замены контактов при этом не требуется. Конструкция разъединителя. Рассмотрим конструктивные особенности коммутационного аппарата на примере трехполюсного разъединителя рубящего типа (РВ, РВК). Разъединитель представляет собой три полюса, расположенных непосредственно на одной стальной раме. У каждого полюса имеется один подвижный и один неподвижный контакт. Подвижные контакты каждого из трех полюсов соединены через фарфоровые тяговые изоляторы с общим валом, который в свою очередь соединен с рычагом привода аппарата. То есть при оперировании приводом коммутационного аппарата одновременно включаются или отключаются (в зависимости от выполняемой операции) три ножа. Жесткость соединения подвижного и неподвижного контактов обеспечивается специальными пружинами. Пружины, нажимая на стальные пластины, прижимают ножи подвижного контакта к неподвижному контакту. В случае короткого замыкания в цепи через разъединитель протекают очень большие токи, которые могут его разрушить. Для того чтобы этого избежать, в разъединителе предусмотрен магнитный замок. Магнитный замок состоит из двух пластин, которые расположены по обе стороны подвижного контакта (те пластины, обеспечивающие жесткость контакта, о которых упоминалось выше). Данные пластины при прохождении тока короткого замыкания через разъединитель намагничиваются и взаимно притягиваются, обеспечивая при этом дополнительную жесткость между неподвижным и подвижным контактами. Для предотвращения отключения разъединителя при включенном выключателе предусмотрены механические блокировки. Также для предотвращения ошибочного или самопроизвольного включения или отключения коммутационного аппарата предусмотрены фиксаторы и механические замки. Разъединители наружной установки должны иметь приспособления, разрушающие ледяную корку, образующуюся при гололеде. Кроме того, их используют для отключения небольших токов нагрузки и их контакты снабжаются рогами для гашения дуги, возникающей между расходящимися контактами.
Индукционные плиты Основная статья: Индукционная плита Индукционная плита — кухонная электрическая плита, разогревающая металлическую посуду индуцированными вихревыми токами, создаваемыми высокочастотным магнитным полем, частотой 20-100 кГц. Такая плита обладает большим КПД по сравнению с ТЭН электроплитками, так как меньше тепла уходит на нагрев корпуса, а кроме того отсутствует период разгона и остывания (когда зря тратится выработанная, но не поглощенная посудой энергия).
Электрическая дуга Электрическая дуга (вольтова дуга, дуговой разряд) — физическое явление, один из видов электрического разряда в газе. Гашение электрической дуги в цепях постоянного тока. При размыкании контактов аппарата, находящегося в цепи постоянного тока, возникает дуговой разряд. Для гашения возникающей дуги постоянного тока обычно стремятся повысить напряжение на дуге (и ее сопротивление) или путем растяжения дуги, или путем повышения напряженности электрического поля в дуговом столбе, а большей частью – одновременно и тем и другим путями. Чтобы обеспечить гашение дуги во всем заданном диапазоне изменения тока I от наибольшего значения до нуля при отключении цепи, нужно, чтобы вольт-амперная характеристика 1 располагалась выше прямой 2 для отключаемой цепи (рис. 305,б). При этом условии падение напряжения в дуге Uдг будет всегда больше приложенного к ней напряжения Uи — IR и ток в цепи будет уменьшаться. Основным средством повышения падения напряжения в дуге является увеличение длины дуги. При размыкании цепей низкого напряжения со сравнительно небольшими токами гашение обеспечивается соответствующим выбором раствора контактов, между которыми возникает дуга. В этом случае дуга гаснет без каких-либо дополнительных устройств. Дугогасительные устройства. Способы гашения дуги могут быть различные, но все они основываются на следующих принципах: принудительное удлинение дуги; охлаждение межконтактного промежутка посредством воздуха, паров или газов; разделение дуги на ряд отдельных коротких дуг. Дугогасительное устройство с защитными рогами (а) и гашение дуги (б) Условия гашения дуги. Условия гашения дуги постоянного тока зависят не только от ее вольт-амперной характеристики, но и от параметров электрической цепи (напряжение, ток, сопротивление и индуктивность), которую включают и отключают контакты аппарата. На рис. 305, а показана вольт-амперная характеристика дуги
Рис. 305. Вольт-амперные характеристики дуги при устойчивом горении (а) и гашении (б)
В чем заключается физический смысл компенсации реактивной мощности? Докажите экономическую целесообразность компенсации реактивной мощности. Нагрузка принимает и отдает в сеть практически всю энергию, при этом возникает ситуация, в которой потребитель вынужден оплачивать энергию, которая не была использована фактически. В противоположность индуктивным элементам, емкостные элементы (например, конденсаторы) стремятся сохранять неизменным напряжение на своих зажимах, то есть для них ток «опережает» напряжение. Поскольку величина потребляемой электроэнергии никогда не является постоянной и может меняться в существенном диапазоне за достаточно малый промежуток времени, то, соответственно, может изменяться и соотношение активной потребляемой энергии к полной (cosφ). При этом чем меньше активная нагрузка потребителя, тем меньше значение cosφ. Из этого следует, что для компенсации реактивной мощности необходимо оборудование, обеспечивающее регулирование cosφ в зависимости от изменяющихся условий работы оборудования - то есть применение установок компенсации реактивной мощности (УКРМ), состоящих, как правило, из батарей емкостных элементов (конденсаторов), коммутационного оборудования и устройств управления. Принцип работы УКРМ заключается в подключении к сети необходимого в данный момент времени количества конденсаторов для известного мгновенного значения реактивной мощности. Экономическая целесообразность. а) за счет компенсации происходит снижение полной мощности и тока; увеличивается пропускная способность линий и трансформаторов; снижается сечение проводов и мощности трансформаторов: б) за счет установки компенсирующих устройств происходит снижение потерь мощности: в) снижаются потери электроэнергии: г) снижаются потери напряжения:
|
||||
Последнее изменение этой страницы: 2016-04-23; просмотров: 803; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.116.52.29 (0.012 с.) |