Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Электродвижущая сила источника тока. НапряжениеСодержание книги
Поиск на нашем сайте
Если в проводнике создать электрическое поле и затем не поддерживать его неизменным, то за счет перемещения зарядов поле исчезнет и, следовательно, ток прекратится. Для того, чтобы поддерживать ток неизменным, необходимо от конца проводника, (см. рис. 2), с меньшим потенциалом отводить приносимые туда током заряды и переносить их к началу проводника с большим потенциалом ,т.е. необходимо создать круговорот зарядов. Это возможно лишь за счет работы сторонних сил неэлектростатической природы, например, за счет протекания химических процессов в гальванических элементах. Величина, численно равная работе сторонних сил, по перемещению единичного положительного заряда называется ЭДС и обозначается : = AСТОР/q. (6) ЭДС, как и потенциал, в СИ измеряется в вольтах. Представим стороннюю силу как , (7) тогда работа сторонних сил на участке 1-2 цепи будет равна , (8) а ЭДС на этом же участке = , где dl - элемент длины проводящего участка цепи. ЭДС, действующая в замкнутой цепи , (9) т.е. ЭДС равна циркуляции вектора напряженности сторонних сил. Однако, кроме сторонних сил, на носители тока действуют силы электростатического поля qE. Следовательно, результирующая сила, действующая в каждой точке цепи на заряд . (10) Работа, совершаемая этой силой над зарядом q на участке 1-2 цепи, рис. 2, . (11) Величина, численно равная работе, совершаемой электрическими и сторонними силами над единичным положительным зарядом, называется падением напряжения или просто напряжением U на данном участке, т. е. U = A / q = + . (12) Участок цепи, на котором не действуют сторонние силы, называется однородным. Для него U = . (13) Участок цепи, на котором действуют сторонние силы, называется неоднородным. Для замкнутой цепи () = 0 и поэтому U = . 3. Закон Ома для однородного участка цепи и закон Ома в дифференциальной форме 3.1. Ом в 1826 г. экспериментально установил закон, который называется законом Ома для однородного участка цепи: ТОК, ТЕКУЩИЙ ПО ОДНОРОДНОМУ МЕТАЛЛИЧЕСКОМУ ПРОВОДНИКУ, ПРОПОРЦИОНАЛЕН ПАДЕНИЮ НАПРЯЖЕНИЯ U НА ПРОВОДНИКЕ", т. е. I = (), (14) где R - сопротивление проводника, измеряется в СИ в омах (Ом); из (14) следует, что 1Ом =1 В/1 А. Сопротивление проводника R =ρl / S, (15) где р - удельное сопротивление, измеряется в СИ вОм ×м. Оно зависит от температуры: = T, где - удельное сопротивление при температуре t = 0°С, - температурный коэффициент сопротивления, близкий к 1/273 К , T – термодинамическая температура; так что с ростом температуры сопротивление металлических проводников увеличивается. Качественная температурная зависимость удельного сопротивления металлического проводника от Т представлена на рис. 3. Сопротивление многих металлов и их сплавов при очень низких температурах Тk (0,14 – 20 K), называемых критическими, скачкообразно уменьшается до нуля. Это явление называется сверхпроводимостью. Закон Ома в дифференциальной форме Найдем связь между векторами и . Для этого мысленно выделим в окрестности некоторой точки проводника элементарный цилиндрический объем с образующими, параллельными векторам и , (см. рис. 4). Между концами проводника длиной dl напряжение U = Edl, под действием которого через его поперечное сечение площадью dS течет ток I = jdS. Сопротивление цилиндрического проводника, в нашем случае, равно R = .Используя закон Ома для участка цепи I = , находим: jdS = , откуда и получаем закон Ома в дифференциальной форме = = , (16) где = удельная электропроводность; [ ] = 1 / (Ом м) = 1 См / м, где 1 См = 1 / Ом – это единица измерения электропроводности в СИ, называемая сименс (См). Для металлов согласно классической теории электропроводности = , (17) где n - концентрация свободных электронов, она может достигать 10 10 электрон / м ; e – заряд электрона, m – его масса; < > – средняя длина свободного пробега электрона; < v > = (18) < v > – средняя скорость теплового движения электрона, k = 1,38 ×10 Дж/К - постоянная Больцмана. С учетом (18) из (17) следует, что ~ , а , тогда как опыт показывает, что ~ Т. Этот и другие недостатки классической теории электропроводности металлов устранила квантовая теория электропроводности.
|
||||
Последнее изменение этой страницы: 2016-04-19; просмотров: 234; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.189.184.99 (0.006 с.) |