Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Классификация и функциональная морфология нейроглииСодержание книги
Поиск на нашем сайте
Нейроглия включает макроглию и микроглию. Макроглия подразделяется на: астроцитарную глию (астроглию), олигодендроглию и эпендимную глию (рис.8.7.). Астророглия (от греч. astra - звезда и glia - клей) представлена ас-троцитами – самыми крупными из глиальных клеток, которые встречаются во всех отделах нервной системы.
Рис. 8.7. А – Схема астроцита (astrocyte). Концевые образования отростков, отходящих от тела радиально оплетают кровеносный сосуд (blood vessels), участвуя в образовании гематоэнцефалического барьера. Б – Астроциты имеющие звездчатую форму, располагаются в сером веществе мозга, ограничивая рецепторные поля нейронов.(х400 импрегнация солями серебра).
Астроциты характеризуются светлым овальным ядром, цитоплазмой с умеренно развитыми важнейшими органеллами, многочисленными гранулами гликогена и промежуточными филаментами. На концах отростков имеются пластинчатые расширения ("ножки"), которые, соединяясь друг с другом, в виде мембран окружают сосуды или нейроны (рис.8.7.А) Астроциты подразделяются на две группы:
Функции астроцитов: 1. Опорная - формирование опорного каркаса ЦНС, внутри которого располагаются другие клетки и волокна; в ходе эмбрионального развития служат опорными и направляющими элементами, вдоль которых происходит миграция развивающихся нейронов. Направляющая функция связана также с секрецией ростовых факторов и продукцией определенных компонентов межклеточного вещества, распознаваемых эмбриональными нейронами и их отростками. 2. Разграничительная, транспортная и барьерная (направлена на обеспечение оптимального микроокружения нейронов): образование периваскулярных пограничных мембран уплощенными концевыми участками отростков, которые охватывают снаружи капилляры, формируя основу гемато-энцефалического барьера (ГЭБ) ГЭБ отделяет нейроны ЦНС от крови и тканей внутренней среды. 3. Метаболическая и регуляторная – считается одной из наиболее важных функций астроцитов, которая направлена на поддержание определенных концентраций ионов К+ и медиаторов в микроокружении нейронов. Астроциты совместно с клетками олигодендроглии принимают участие в метаболизме медиаторов (катехоламинов, ГАМК, пептидов, аминокислот), активно захватывая их из синаптической щели после осуществления синаптической передачи и далее передавая их нейрону; 4. Защитная (фагоцитарная, иммунная и репаративная) - участие в различных защитных реакциях при повреждении нервной ткани, Астроциты, как и клетки микроглии (см. ниже) характеризуются выраженной фагоцитарной активностью На завершающих этапах воспалительных реакций в ЦНС астроциты, разрастаясь, формируют на месте поврежденной ткани глиалъный рубец. Эпендимная глия, или эпендима (от греч. ependyma - верхняя одежда, т.е. выстилка) образована клетками кубической или цилиндрической формы (эпендимоцитами), однослойные пласты которых выстилают полости желудочков головного мозга и центрального канала спинного мозга (см. рис 8.8.). К эпендимной глии ряд авторов относит и плоские клетки, образующие выстилки мозговых оболочек (менинготелий).
Рис. 8.8. На электронной микрофотографии изображены: Клетки эпендимы кубовидной формы, образуют пласт, выстилая стенки желудочка мозга, спинномозговой канал.(х400). На свободный поверхности клеток – реснички.
Ядро эпендимоцитов содержит плотный хроматин, органеллы умеренно развиты. Апикальная поверхность часть эпендимоцитов несет реснички, которые своими движениями перемещают СМЖ, а от базального полюса некоторых клеток отходит длинный отросток, протягивающийся до поверхности мозга и входящий в состав поверхностной пограничной глиальной мембраны (краевой глии). Функции эпендимной глии: 1. опорная (за счет базальных отростков); 2. образование барьеров: - нейро-ликворного (с высокой проницаемостью), - гемато-ликворного 3. ультрафильтрация компонентов СМЖ Олигодендроглия (от греч. oligo - мало, dendron - дерево и glia - клей, т.е. глия с малым количеством отростков) – обширная группа разнообразных мелких клеток (олигодендроцитов) с короткими немногочисленными отростками, которые окружают тела нейронов, входят состав нервных волокон и. нервных окончаний (рис.8.9.). Встречаются в ЦНС (сером и белом веществе) и ПНС; характеризуются темным ядром; плотной цитоплазмой с хорошо развитым синтетическим аппаратом, высоким содержанием митохондрий, лизосом и гранул гликогена.
Рис. 8.9. А – Схема олигодендроцита. Б – олигодендроцит (O). В цитоплазме присутствуют ЭПС, рибосомы, микротрубочки, хорошо развит аппарат Гольджи (G), рядом тело нейрона (N), хорошо виден дендрит (D), миелинизированный аксон (М).(х 13000).
Микроглия - совокупность мелких удлиненных звездчатых клеток (микроглиоцитов) с плотной цитоплазмой и сравнительно короткими ветвящимися отростками, располагающихся преимущественно вдоль капилляров в ЦНС (см. рис. 8.10.). В отличие от клеток макроглии, они имеют мезенхимное происхождение, развиваясь непосредственно из моноцитов (или периваскулярньгх макрофагов мозга) и относятся к макрофагально-моноцитарной системе. Для них характерны ядра с преобладанием гетерохроматина и высокое содержание лизосом в цитоплазме. Рис. 8.10. Схема микроглиоцита (microglial cell).
Функция микроглии – защитная (в том числе иммунная). Клетки микроглии традиционно рассматривают как специализированные макрофаги ЦНС - они обладают значительной подвижностью, активируясь и увеличиваясь в числе при воспалительных и дегенеративных заболеваниях нервной системы, погибших клеток (детрит). НЕPBHЫE ВОЛОКНА
Нервные волокна представляют собой отростки нейронов, покрытые глиальными оболочками. Различают два вида нервных волокон – безмиелиновые и миелиновые. Оба вида состоят из центрально лежащего отростка нейрона (осевого цилиндра), окруженного оболочкой из клеток олигодендроглии (в ПНС они называются леммоцитами или шванновскими клетками). Безмиелиновые нервные волокна у взрослого располагаются преимущественно в составе вегетативной нервной системы и характеризуются сравнительно низкой скоростью проведения нервных импульсов (0.5-2 м/с). Они образуются путем погружения осевого цилиндра (аксона) в цитоплазму шванновской клетки, располагающихся в виде тяжей. При этом их плазмолемма прогибается, окружая аксон, и образует дупликатуру – мезаксон (рис. 8.11.).
Рис. 8.11. Безмиелиновое нервное волокно. А. Схема (поперечный срез). Одна шванновская клетка (schwann cell) окружает несколько аксонов. Ядро(nucleus) в центре, дубликатура мембран – мезаксон (mesaxon). Б. Элекронная микрофотография (х 36.000). Аксон (А) окружен шванновской клеткой (S) поперечный срез. В поле зрения видны коллагеновые волокна (С) и фибробласт (F).
Нередко в цитоплазме одного леммоцита могут находиться до 10-20 осевых цилиндров (рис.8.11.). Такое волокно напоминает электрический кабель и поэтому называется волокном кабельного типа. Поверхность волокна покрыта базальной мембраной. В ЦНС, в особенности, в ходе ее развития, описаны безмиелиновые волокна, состоящие из "голого" аксона, лишенного оболочки из леммоцитов. 1 2 3 4 Рис. 8.12. Образование миелинового (1-3) и безмиелинового (4) нервных волокон в периферической нервной системе. Нервное волокно образуется путем погружения аксона (А) нервной клетки в цитоплазму леммоцита (ЛЦ). При образовании миелинового волокна дупликатура плазмолеммы ЛЦ – мезаксон (МА) - наматывается вокруг А, формируя витки миелиновой оболочки (МО). В представленном на рисунке безмиелиновом волокне в цитоплазму швановской клетки погружены несколько А (волокно "кабельного" типа). Я–ядро.
Миелиновые нервные волокна встречаются в ЦНС и ПНС и характеризуются высокой скоростью проведения нервных импульсов (5-120 м/с). Миелиновые волокна обычно толще безмиелиновых и содержат осевые цилиндры большего диаметра. В миелиновом волокне осевой цилиндр непосредственно окружен особой миелиновой оболочкой, вокруг которой располагается тонкий слой, включающий цитоплазму и ядро леммоцита - нейролемма (рис.8.12.). Снаружи волокно также покрыто базалъной мембраной. Миелиновая оболочка содержит высокие концентрации липидов и интенсивно окрашивается осмиевой кислотой, имея под световым микроскопом вид однородного слоя, однако под электронным микроскопом обнаруживается, что она возникает в результате слияния многочисленных (до 300) мембранных витков (пластин).\
Рис. 8.13. А – Поперечный срез миелинового нервного волокна (х 20.000). (S) – шванновская клетка, (А) – аксон, (М) – миелиновая оболочка. Б – Миелиновая оболочка, состоящая из поперечно расположенных мембран (х 46.000).
Рис. 8.14. Строение миелинового нервного волокна. Миелиновое волокно состоит из осевого цилиндра, или аксона (А), непосредственно окруженного миелиновой оболочкой (МО) и нейролеммой (НЛ), включающей цитоплазму (ЦЛ) и ядро швановской клетки. Снаружи волокно покрыто базальной мембраной (БМ). Участки МО, в которых сохраняются промежутки между витками миелина, заполненные ЦЛ и поэтому не окрашиваемые осмием, имеют вид миелиновых насечек (МН). МО отсутствует в участках, соответствующих границе соседних леммоцитов - узловых перехватах (УП).
Образование миелиновой оболочки происходит при взаимодействии осевого цилиндра и клеток олигодендроглии с некоторыми различиями в ПНС и ЦНС. Образование миелиновой оболочки в ПНС: погружение осевого цилиндра в леммоцит сопровождается формированием длинного мезаксона, который начинает вращатъся вокруг аксона, образуя первые рыхло расположенные витки миелиновой оболочки (рис. 8.12). По мере увеличения числа витков (пластин) в процессе созревания миелина они располагаются все более плотно и частично сливаются; промежутки между ними, заполненные цитоплазмой швановской клетки, сохраняются лишь в отдельных участках, не окрашиваемых осмием - миелиновых насечках (Шмидта-Ланшермана). При формировании миелиновой оболочки цитоплазма и ядро швановской клетки оттесняются к периферии волокна, образуя нейролемму. По длине волокна миелиновая оболочка имеет прерывистый ход.
Узловые перехваты (Ранвье) – участки в области границы соседних леммоцитов, в которых миелиновая оболочка отсутствует, а аксон прикрыт лишь интердигитирующими отросткми соседних леммоцитов. Узловые перехваты повторяются по ходу миелинового волокна с интервалом, равным, в среднем, 1-2 мм. В области узлового перехвата аксон часто расширяется, а в его плазмолемме присутствуют многочисленные натриевые каналы (которые отсутствуют вне перехватов под миелиновой оболочкой).
Рис. 8.15. А – Разрывы в миелиновой оболочке – перехват Ранвье (R) (х320). Б –Ультраструктура перехвата Ранвье (R) (х 14.000). В Аксоне (А) обнаруживаются нейрофиламенты, микротрубочки и митохондрии. (NMA) – немиелинизированное волокно, (М) – миелиновая оболочка, (EL) – наружная пластинка шванновской клетки, (С) – коллагеновые волокна, (S) – цитоплазма шванновской клетки.
Распространение деполяризации в миелиновом волокне осуществляется скачками от перехвата к перехвату (сальтаторно). Деполяризация в области одного узлового перехвата сопровождается ее быстрым пассивным распространением по аксону к следующему перехвату, (так как утечка тока в межузловом участке минимальна благодаря высоким изолирующим свойствам миелина). В области следующего перехвата импульс вызывает включение имеющихся ионных каналов и возникает новый участок локальной деполяризации и т. д. Нарушение образования и повреждение образованного миелина лежат в основе ряда тяжелых заболеваний нервной системы. Миелин в ЦНС может явиться мишенью для аутоиммунного поражения Т-лимфоцитами и макрофагами с его разрушением (демиелинизацией). Этот процесс активно протекает при рассеянном склерозе - тяжелом заболевании неясной (вероятно, вирусной) природы, связанном с расстройством различных функций, развитием параличей, потерей чувствительности. Характер неврологических нарушений определяется топографией и размерами поврежденных участков. При некоторых метаболических расстройствах возникают нарушения образования миелина - лейкодистрофии, проявляющиеся в детстве тяжелыми поражениями нервной системы.
|
||||||||||||||
Последнее изменение этой страницы: 2016-04-21; просмотров: 824; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.10.75 (0.009 с.) |