![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
ТЕМА: Моделювання операцій складання та віднімання синусоідальних струмів та напруг засобами Electronics WorkbenchСодержание книги
Поиск на нашем сайте
Мета: отримання практичних навичок при моделюванні кіл синусоідного струму засобами Electronics Workbench Як відомо з тригонометрії, при складанні двох коливань синусоідальної форми:
утворюється синусоідальний сигнал тієїж частоти:
де
Слід зазначити, що формула для Визначимо у якості прикладу суму і різницю двох синусоідальних струмів
звідки фаза Для розрахунку різниці струмів скористаємося співвідношенням:
Рис.1 – Схеми складання (а) і віднімання (б) двох синусоідальних струмів і осцилограми струмів Для різниці струмів у даному випадку отримаємо:
звідки фаза В схемах для моделювання складання (рис.1,а) та віднімання (рис.2,б) синусоідальних струмів використані джерела змінного струму, у діалоговому вікні яких можна задати частоту, струм і фазу у градусах. Одан задавати від’ємні значення фази у програмі не припустимо. Тому для струму Для вимірювання фази використовуємо осцилограф, в каналі А якого відображений сигнал від джерела
Результати осцилографічних вимірів, отриманих при моделюванні процессу складання двох синусоідальних струмів, наведено на рис.1,в (для підвищення точності оцилограф ввімкнений у режимі ZOOM). Візирні лінійки поставлені у точки перетину синусоідами вісі часу (візирна лінійка 1 − для струму Розглянемо тепер процес складання напруг Рис.2 – Схема складання двох синусоідальних напруг
ПРАКТИЧНЕ ЗАНЯТТЯ №4 ТЕМА: Вимірювання частоти, фази і потужності засобами Electronics Workbench Мета: Отримати практичні навички використання осцилографу у Electronics Workbench для проведення вимірювань методом фігур Ліссажу
Розглянемо один з варіантів вимірювання частоти і фази за допомогою осцилографічного методу – за інтерференційними фігурами (фігури Ліссажу). Схема виконання таких вимірювань наведена на рис.4.1. Крім осцилографу вона містить джерело Us опорної частоти та досліджувальне джерело сигналів Ux. Оскільки масштаб по вісям Х (канал А) та Y (канал В) різні, то для симетрії фігур амплітуда джерела Ux обрана меншою (рис.4.1). При фазі 900 напруга Ux фігура Ліссажу являє собою круг (рис.4.2), при 450 – похилий під 450 еліпс (рис.4.3). Точність вимірів фази та частоти за допомогою фігур Ліссажу суттєво нижче, ніж осцилографічних у режимі ZOOM, однак вони можуть бути використані для демонстрації дослідів по інтерференції хвиль та інших хвильових процесів. У якості прикладу на рис.4.4 наведена інтерференційна картина при нульовій фазі джерела Ux при частоті 2000Гц.
Розглянемо питання вимірювання потужності та фази у колі змінного струму. Якщо на ділянці кола (двохполюсника) тече струм
Двійка у знаменнику з’явилася у зв’язку з тим, що при розрахунках потужності використовується діюче значення струму та напруги, яке у
де S=IU – повна потужність; Рис.4.1 – Вимірювання фази та частоти за фігурами Ліссажу Щодо другою складової виразу (4.2), то тут слід згадати о понятті комплексної потужності, вираз для якої можна отримати при заміні комплекса напруги
Так як
співпадає з першим членом виразу (4.3) і також називається активною потужністю. Коефіцієнт при другому члені виразу (4.4) називається реактивною потужністю:
і у такому виді використовується при її розрахунках. При цьому величини P, Q і S створюють так званий трикутник потужності та пов’язані між собою співвідношенням:
Якщо діяти природним шляхом (без використання сполученого комплексу напруги), то комплексна частина виразу (4.1) може бути представлена як як і у формулі 4.2, пульсує з подвійною частотою. Для вимірювання потужності та її складових використовуємо модель ватметру. Модифікована схема цієї моделі містить (рис.4.2, а,б) кероване струмом джерело Іс, що імітує струмову обмотку ватметру (вхід І); кероване напругою джерело Uc1, що імітує обмотку напруги (вход U); перемножував М, що імітує взаємодію струмової та обмотки напруги ватметра (вихід W – для вимірювання активної потужності вольтметром постійного струму). Активний опір «струмової обмотки», що вмикається послідовно з навантаженням (зажим L – LOAD), складеної у даному випадку з послідовно увімкнених конденсатора Cn та активного опору Rn, визначається обраним (у діалоговому вікні) значенням коефіцієнта передачі джерела Іс та у даному випадку дорівнює 0,001 Ом. У той же час для реалізації алгоритму ватметру на базі перемножувала необхідно забезпечити масштаб 1А=1В та відповідно еквівалентний опір «струмової обмотки» 1Ом, що досягається встановленням коефіцієнту передачі джерела Іс (у даному випадку – 1000). Цю функцію у розглядаємому приладі виконує додаткове кероване джерело Uc2 з коефіцієнтом передачі 1000, що дозволяє підвищити рівень сигналу на вході фазометру, який відсутній. Правильність функціонування фазометру можна перевірити за показаннями амперметру Іn та вольтметру W, «проградуюваного» у одиницях активної потужності, тобто у Вт, мВт і т.д. Оскільки амперметр In вимірює діюче (ефективне) значення струму, то активна потужність може бути визначена як
Фазометр складається з двох компараторів на ОУ1, на входи яких надходять сигнали з струмової та обмотки напруги ватметру. Обраний режим роботи ОУ1 за вихідною напругою VSW+=3,6В, VSW-=0 дозволяє сформувати на їх виходах одно полярні імпульси фіксованої амплітуди 3,6В та зміщені відносно один одного на часовий проміжок Т2-Т1=4,5мс (рис.4.2,в), що при значенні періоду Т=20мс відповідає фазовому куту між напругою та струмом у досліджувальному колі Рис.4.2 – Вимірювач потужності та фази (а,б) та осцилограми сигналів у каналі фазометру (в) Розглянуті складові потужності змінного струму можуть бути визначені також за її максимальному та мінімальному значеннями в результаті осцилографічних вимірювань вихідного сигналу ватметру. Активна потужність при цьому визначається як
ПРАКТИЧНЕ ЗАНЯТТЯ №5
|
|||||||
Последнее изменение этой страницы: 2016-04-21; просмотров: 139; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.146.176.19 (0.01 с.) |