Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Виды степенных средних величин.

Поиск

Степенные средние, в зависимости от представления отдельных ве­личин, могут быть простыми и взвешенными. Простая средняя рассчи­тывается при наличии двух и более статистических величин, располо­женных в произвольном порядке. Общая формула простой средней величины имеет вид

= .(1.11)

Взвешенная средняя величина рассчитывается по сгруппированным статистическим величинам с использованием следующей общей формулы

= (1.12)

При этом обозначено:

Xi – значения отдельных статистических величин или середин группировочных интервалов;

m - показатель степени, от значения которого зависят следующие виды степенных средних величин:

при m = -1 средняя гармоническая;

при m = 0 средняя геометрическая;

при m = 1 средняя арифметическая;

при m = 2 средняя квадратическая;

при m = 3 средняя кубическая и так далее.

Используя общие формулы простой и взвешенной средних при разных показателях степени m, получаем частные формулы каждого вида. Так, приняв m = 1, находим, что простая средняя арифметическая величина определяется по формуле

= . (1.13)

Аналогично для взвешенной средней арифметической величины получаем формулу через частоты или через доли (так как )

= . (1.14)

Не представляет трудностей и вывод формул для простых и взвешенных средних квадратических и кубических величин. Несколько сложнее вывод средней гармонической при m = –1. Так, используя формулу (1.11), имеем вначале

гм = = ,

а окончательно получим, что простая средняя гармоническая величина определяется по формуле

ГМ = , (1.15)

Аналогично выводится формула взвешенной средней гармонической величины, которая имеет следующий окончательный вид через частоты или через доли

ГМ = , (1.16)

Наиболее часто употребляются формулы средних арифметических и гармонических величин.

Структурные средние величины.

Структурное среднее характеризует состав статистической совокупности по одному из варьирующих признаков. К этим средним относятся мода и медиана.

Мода - такое значение варьирующего признака, которое в данном ряду распределения имеет наибольшую частоту.

В дискретных рядах распределений мода определяется визуально. Сначала определяется наибольшая частота, а по ней модальное значение признака. В интервальных рядах для вычисления моды используется следующая формула:

Xmo - нижняя граница модальности (интервал ряда с наибольшей частотой)

Mo - величина интервала

fMo - частота модального интервала

fMo-1 - частота интервала предшествующего модальному

fMo+1 - частота интервала следующего за модальным

Медианой называется такое значение варьирующего признака, которое делит ряд распределения на две равные части по объему частот. Медиана рассчитывается по разному в дискретных и интервальных рядах.

1. Если ряд распределения дискретный и состоит из четного числа членов, то медиана определяется как средняя величина из двух серединных значений рангированного ряда признаков.

2. Если в дискретном ряду распределения нечетное число уровней, то медианой будет серединное значение рангированного ряда признаков.

В интервальных рядах медиана определяется по формуле:

- нижняя граница медианного интервала (интервала для которого накопленная частота впервые превысит полусумму частот)

Me - величина интервала

- сумма частот ряда

- сумма накопленных частот предшествующих медианному интервалу

- частота медианного интервала

Показатели вариации.

Различают вариацию признака в абсолютных и относительных величинах.

К абсолютным показателям относятся: размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, дисперсия. Все абсолютные показатели имеют ту же размерность, что и изучаемые величины.

К относительным показателям относятся коэффициенты осцилляции, линейного отклонения и вариации.

Показатели абсолютные. Рассчитаем абсолютные показатели, характеризующие вариацию признака.

Размах вариации, представляет собой разность между максимальным и минимальным значением признака.

R = Xmax – Xmin. (6.1)

Показатель размаха вариации не всегда применим, так как он учитывает только крайние значения признака, которые могут сильно отличаться от всех других единиц.

Более точно можно определить вариацию в ряду при помощи показателей, учитывающих отклонения всех вариантов от средней арифметической.

Таких показателей в статистике два: среднее линейное и среднее квадратическое отклонение.

Среднее линейное отклонение (L)представляет собой среднее арифметическое из абсолютных значений отклонений отдельных вариантов от средней.

– для несгруппированных данных; (6.2)
– для сгруппированных данных. (6.3)

Практическое использование среднего линейного отклонения заключается в следующем, с помощью этого показателя анализируется состав работающих, ритмичность производства, равномерность поставок материалов.



Поделиться:


Последнее изменение этой страницы: 2016-04-20; просмотров: 356; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.138.214 (0.007 с.)