Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Модуль 5. Статистические методы прогнозирования процессов

Поиск

Блок 12. Ряды динамики. Исследование основных тенденций развития явлений

Все социально-экономические явления развиваются во времени. Динамизм явлений является результатом взаимодействия многих причин и факторов. Изучение динамики развития явлений преследует цель – выявление и измерение тенденций и закономерностей их развития. Для того, чтобы можно было проанализировать явления в развитии, необходимо построить ряды динамики.

Рядами динамики называются статистические данные, отображающие развитие явления во времени. Ряды динамики имеют два основных элемента:

1. уровни, характеризующие величину признака;

2. периоды, к которым относятся уровни.

Ряды динамики могут быть: моментными, когда состояние явления фиксируется на какой-то момент и интервальными, когда явление отражается за отдельные периоды времени.

С помощью рядов динамики осуществляется изучение закономерностей развития социально-экономических явлений по следующим направлениям: 1) характеристика уровней развития явлений во времени; 2) измерение динамики развития явлений с помощью системы статистических показателей; 3) выявление и количественная оценка основных тенденций развития явлений (тренда); 4) изучение периодических колебаний в развитии явлений; 5) экстраполяция и прогнозирование развития явлений.

Основным условием правильного построения ряда динамики является сопоставимость его элементов. Ряды динамики формируются в результате сводки и обработки материалов периодических наблюдений. Повторяющиеся во времени значения отдельных показателей систематизируются в хронологической последовательности. При этом ряды динамики охватывают отдельные периоды времени, когда изучаемые явления могут находиться в различных условиях, которые могут привести к несопоставимости отчетных данных с данными других периодов. В этих случаях необходимо приведение всех составляющих элементов к сопоставимому виду. Для этого проводится анализ причин, приведших к несопоставимости полученной информации и применяется соответствующая обработка, позволяющая привести показатели к сопоставимому виду.

Причины несопоставимости показателей в рядах динамики могут быть различными. Это может быть разновеликость показателей времени, неоднородность состава изучаемых совокупностей во времени, изменение методики первичного учета и сводки исходной информации, различия применяемых единиц измерения, ценовые изменения и т.д.

Данные могут быть несопоставимыми по кругу охватываемых объектов. Например, в городе сначала было 14 гостиниц, затем в строй действующих в 2002 г. было введено еще две. Изучение динамики валовой продукции (услуг) гостиниц во времени стали несопоставимыми. Привести к сопоставимости динамического ряда можно следующим образом:

 

Показатели 2000 г. 2001 г. 2002 г. 2003 г. 2004 г. 2005 г.
Валовая продукция 14-и гостиниц (млн. руб.)            
Валовая продукция 16-и гостиниц (млн. руб.)            
В %% к уровню 2002 г. 79,0 90,0 100,0 108,3 114,5 127,0

Для того, чтобы динамический ряд сделать сопоставимым 2002 г., когда были введены в стой действующих еще две гостиницы, был принят за 100%.

Уровни динамического ряда могут быть рассчитаны различными способами. Например, часть показателей зафиксированы на определенную дату, а другая часть рассчитана как среднегодовая численность. В этом случае необходимо провести перерасчет данных и привести к их к одному показателю.

Характеристики динамики

Для количественной оценки динамики развития явлений используются статистические показатели динамики: абсолютные приросты, темпы роста и прироста, которые дают характеристику направления и размер изменений явления во времени. Рассмотрим условный пример с потоками туристов в регион в течение ряда лет:

Год            
Количество туристов, млн. чел.   1,155   1,170   1,201   1,280   1,320   1,410

 

Средний уровень динамики для интервальных рядов представим как где n – число уровней. млн. человек.

Для моментных рядов фиксируется состояние явления на определенный момент, это могут быть данные на начало или конец какого-либо периода (например, по состоянию на 1 января текущего года). Средний уровень здесь определяется как средняя арифметическая из двух этих показателей. Например, численность работников турфирмы на 1 января.

Годы          
Человек          

60 человек на 1 января 2003 г. – это одновременно численность работников фирмы на 31 декабря 2002 г. Поэтому средняя численность работников:

за 2003 г. чел. за 2004 г. =78 чел.

за 2005г. чел. за 2006 г. чел.

Средняя численность за период составила чел.

Средний уровень моментного ряда рассчитывается также по средней хронологической:

Например, имеются данные о числе гостей в отеле по состоянию на начало квартала в течение 2005 года.

Кварталы 01.01 01.04 01.07 01.10 01.01.06
Число гостей          

Средняя численность гостей в течение года:

чел.

В динамических рядах определяют вариацию динамики по формулам:

и

С помощью простейших показателей определим направление и размер изменений уровней во времени по данным потоков туристов в регионе в течение ряда лет:

Год            
Количество туристов, млн. чел. у   1,155   1,170   1,201   1,280   1,320   1,410
Ежегодный абсолютный прирост   -   0,015   0,031   0,079   0,040   0,090
Темп роста к предыдущему году   -   1,013   1,026   1,066   1,031   1,068
Темп роста в % - 101,3 102,6 106,6 103,1 106,8
Темп прироста к предыдущему году   -   1,3   2,6   6,6   3,1   6,8
Темп роста к 2000 г. (%) 100,0 101,3 103,9 110,8 114,3 122,1
Темп прироста к 2000 году - 1,3 3,9 10,8 14,3 22,1

 

Исследование тенденций развития явлений

Изменение уровней рядов динамики связано с влиянием на изучаемое явление множества факторов, которые различны по силе воздействия, направлению и времени их действия. Постоянно действующие факторы оказывают на явление определяющее воздействие и формируют в рядах динамики основное направление развитие – тренд. Воздействие других факторов, как правило, периодическое и вызывает колебания уровней рядов динамики. Определенное воздействие на динамику развития явления могут оказывать отдельные случайные (спорадические) факторы.

Воздействие постоянных, периодических и разовых причин на уровни динамики развития явления вызывает необходимость изучения этих факторов для определения тренда, периодических колебаний и случайных отклонений.

Простейший способ обработки динамического ряда с целью выявления тенденции его развития заключается в укрупнении интервалов времени. Предположим, имеются данные о количестве гостей в отеле по месяцам в течение года:

Месяц Количество гостей Месяц Количество гостей
Январь Февраль Март Апрель Май Июнь   Июль Август Сентябрь Октябрь Ноябрь Декабрь  


Укрупним интервалы до трех месяцев, рассчитаем общее количество гостей и среднемесячное их количество по кварталам:

Квартал Количество гостей Среднемесячное количество гостей по кварталам
I II III IY    

Укрупнив интервалы, устранили случайные колебания и проявили основную тенденцию сезонных колебаний в потоке гостей в течение года.

Сглаживание способом скользящей средней. Суть этого способа заключается в замене фактических уровней рядом подвижных (скользящих) средних, которые рассчитываются для последовательно подвижных интервалов и относятся к середине каждого из них. Сглаживание этим способом можно производить по любому числу членов ряда. Если осуществляется сглаживание ряда динамики с интервалом из 5 членов, то в этом случае необходимо последовательно суммировать по 5 членов и результаты делить на 5. Например, поток туристов в страну в течение 10 лет составил:

Годы Поток туристов млн. человек Скользящая сумма из 5 членов Скользящая средняя
  4,3 4,6 4,3 4,5 4,3 5,2 5,3 5,7 6,0 6,0 - - 22,0 22,9 23,6 25,0 26,5 28,0 - - - - 4,40 4,58 4,72 5,00 5,30 5,64 - -

Недостатком сглаживания ряда способом скользящей средней является то, что сглаженный ряд укорачивается по сравнению с фактическим на члена с одного и другого конца (n- число членов, из которых рассчитываются скользящие средние). В нашем случае это по с каждой стороны.

Выравнивание по аналитическим формулам. Этот способ обработки динамических рядов является более совершенным по сравнению с вышеприведенными способами. Способ предполагает подбор наиболее подходящей функции, для отражения тенденции развития изучаемого явления. Задача выравнивания здесь сводится к определению вида функции, отысканию ее параметров по эмпирическим данным и расчету теоретических уровней по найденной формуле.

К наиболее простым формулам, отражающим тенденции развития относятся:

1) прямая вида , где -теоретический уровень, t – время, a и b – параметры прямой.

2) парабола второго порядка

3) показательная функция

4) гипербола .

Выравнивание по прямой. Как правило, используется в тех случаях, когда абсолютные приросты относительно постоянны, т.е. когда уровни изменяются приблизительно в рамках арифметической прогрессии.

Параметры a и b искомой прямой находятся решением системы нормальных уравнений:

,

где y - уровни эмпирического ряда, n – количество уровней ряда, t- время

Эту систему можно упростить, если отсчет моментов времени ведется от середины ряда. При нечетном числе уровней ряда средняя точка принимается за 0, тогда предшествующие периоды обозначаются: -1,-2,-3 и т.д., а последующие за средним: +1,+2,+3 и т.д. В сумме t должно сводиться к 0.

При четном числе уровней ряда два серединных момента времени принимаются за -1 и +1 и все остальные соответственно обозначаются через два интервала:-5, -3, -1, +1, +3, +5, В этом случае и система уравнений принимает вид:

 

b , тогда , .

Рассмотрим условный пример с потоками туристов в регион в течение 5 лет:

Годы Поток туристов, тыс. чел. (y) Условное обозначение времени (t)   t2 yt  
    -2 -1 +1   -220 -115 109,8 115,0 120,2 125,4 130,6
n =5    

Определяем параметры: , b=

Тогда уравнение теоретической прямой будет иметь вид: . Подставляя последовательно значения t= -2, -1, 0, 1, 2 находим выравненные уровни динамического ряда.

Выравнивание по параболе 2-го порядка. Выравнивание по параболе 2-го порядка сводится к нахождению параметров a,b,c из системы нормальных уравнений:

 

.

 

При система уравнений имеет вид:

.

Произведем выравнивание динамического ряда объема услуг фирмы за 6 лет параболой 2-го порядка:

Годы   Объем услуг, млн. руб. (у) t t2 t4 ty t2 y уt= 53,73+6,22t+0,28t2
  29,9 37,3 47,2 60,9 75,2 91,5   -5 -3 -1       -149,5 -111,9 -47,2 60,9 225,6 457,5 747,5 335,7 47,2 60,9 676,8 2287,5 29,6 37,6 47,8 60,2 74,9 91,9
Итого n=6 342,0       435,4 4155,6 342,0

Полученные суммы по столбцам подставим в систему уравнений:

6 а0 + 70 а2 = 342

70 а1 = 435,4

70 а0 +1414 а2 = 4155,6

Решив уравнение, находим: а0 = 53,73; а1 = 6,22; а2 = 0,28.

Отсюда искомое уравнение параболы 2-го порядка уt= 53,73+6,22t+0,28t2. На основе этого уравнения рассчитаем выравненные уровни, подставив соответствующие значения t и занесем их в последнюю графу таблицы.

Выравнивание по показательной функции. В основном производится, когда динамический ряд отражает развитие процесса в геометрической прогрессии. Уравнение показательной функции . Логарифм показательной функции представляет собой уравнение прямой Заменив уровни ряда их логарифмами, параметры a и b можно определить через их логарифмы. Система уравнений подобна системе уравнений при выравнивании по прямой.


 

Если , то система сводится к следующему виду:

 

Отсюда и .

Произведем выравнивание динамического ряда продаж турфирмой туристских путевок в течение 7 лет:

Годы Количество проданных путевок, тыс. шт.(у)   lg y Условное обозначение времени t   t2   t lgy   lg yt Выравненные уровни yt
    2,0334 2,0453 2,0607 2,0719 2,0828 2,0934 2,1072 -3 -2 -1     -6,1002 -4,0906 -2,0607 2,0828 4,1868 6,3216 2,0344 2,0465 2,0586 2,0707 2,0828 2,0949 2,1070 108,2 111,3 114,5 117,7 121.0 124,5 127,9
n=7 14,4947 0,3397 14,4949 825,1

lg a=

lg b= ,

следовательно, или .

Подставляем в формулу значения t, найдем логарифмы , а затем по таблицам - .

Для 2000 г. lgy=2,0707+0,0121(-3)=2,0344 или .

Выравненные уровни близки к эмпирическим уровням, значит показательная функция подходит для отражения тренда.



Поделиться:


Последнее изменение этой страницы: 2016-04-20; просмотров: 363; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.226.104.30 (0.012 с.)