Характеристика основных блоков эвм 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Характеристика основных блоков эвм



ЭВМ включает три основных устройства: системный блок, клавиа­туру и дисплей (монитор). Однако для расширения функциональных возможностей ЭВМ можно подключить различные дополнительные периферийные устройства, в частности: печатающие устройства (прин­теры), накопители на магнитной ленте (стримеры), различные манипу­ляторы (мышь, джойстик, трекбол, световое перо), устройства оп­тического считывания изображений (сканеры), графопостроители (плот­теры) и др.

ЭВМ, как правило, имеет модульную структуру (рис. 3.8). Все модули связаны с системной магистралью (шиной).

Системный блок. Главный блок ЭВМ включает в свой со­став центральный микропроцессор, сопроцессор, модули оперативной и постоянной памяти, контроллеры, накопители на магнитных дисках и другие функциональные модули. Набор модулей определяется типом ЭВМ. Пользователи по своему желанию могут изменять конфигура­цию ЭВМ, подключая дополнительные периферийные устройства.

В системный блок может быть встроено звуковое устройство, с по­мощью которого пользователю удобно следить за работой машины, во­время обращать внимание на возникшие сбои в отдельных устройствах или на возникновение необычной ситуации при решении задачи на ЭВМ. Со звуковым устройством часто связан таймер, позволяющий вести отсчет времени работы машины, фиксировать календарное время, указывать на окончание заданного промежутка времени при выполне­нии той или иной задачи.

Микропроцессор (МП). Центральный микропроцессор является ядром любой ЭВМ. Он выполняет функции обработки информации и управ­ления работой всех блоков ЭВМ. В состав МП входят:

· арифметико-логическое устройство,

· центральное устройство управления,

· внутренняя регистровая память,

· кэш-память,

· схема обращения к оперативной памяти,

· схемы управления системной шиной и др.

Рис 3.8. Структурная схема ЭВМ с периферийными устройствами. (АЛУ– арифметико-логическое устройство, УУ– устройство управления, ПП – постоянная память, ОП – оперативная память, ВУ– внешнее устройство, НГМД – накопитель на гибких магнитных дисках, НЖМД – накопитель на жестких маг­нитных дисках, НМЛ – накопитель на магнитной ленте, ПУ– печатающее устройство).

Рассмотрим структуру и функционирование микропроцессора на примере разработанной модели фирмы Intel.

Арифметико-логическое устройство (АЛУ) – функциональная часть ЭВМ, которая выполняет логические и арифметические действия, необходи­мые для переработки информации, хранящейся в памяти. Оно характеризует­ся: временем выполнения элементарных операций; средним быстродействи­ем, т.е. количеством арифметических или логических действий (операций), выполняемых в единицу времени (секунду); набором элементарных дейст­вий, которые оно выполняет. Важной характеристикой АЛУ является также система счисления, в которой осуществляются все действия.

АЛУ выполняет логические операции, а также арифметические опе­рации в двоичной системе счисления и в двоично-десятичном коде, причем арифметические операции над числами, представленными в форме с плавающей точкой, реализуются в специальном блоке. В некоторых конфигурациях с этой целью используется арифметический сопро­цессор. Он имеет собственные регистры данных и управления, работает параллельно с центральным МП, обрабатывает данные с плавающей точкой.

Память микропроцессора состоит из функциональных регистров: регистры обще­го назначения, указатель команд, регистр флагов и регистры сегментов.

Регистр – внутренне запоминающее устройство процессора для временного хранения обрабатываемой или управляющей информации и быстрого доступа к ней.

Регистры общего назначения используются для хранения данных и адресов. Они обеспечивают работу с данными и адресами. Каж­дый из таких регистров имеет свое имя.

Указатель команд содержит смещение при определении адреса следующей команды.

Регистр флагов указывает признаки результата выполнения команды.

Регистры сегментов содержат значения селекторов сегментов, опре­деляющих текущие адресуемые сегменты памяти.

Кроме того, регистровая память МП содержит регистры процессора обработки чисел с плавающей точкой, системные и некото­рые другие регистры.

Производительность микропроцессора значительно повышается за счет буферизации часто используемых команд и данных во внутренней кэш-памяти, при этом сокращает­ся число обращений к внешней памяти. Кэш-память – сверхоперативная буферная память, предназначенная для промежуточного хранения наиболее часто используемых процессором данных. Внутренняя кэш-память имеет несколько режимов работы, что обеспечивает гибкость отладки и вы­полнения рабочих программ.

Устройство управления микропроцессорного типа обеспечивает конвейерную обработку данных с помощью блока предварительной вы­борки (очереди команд).

Устройство управления МП обеспечивает многозадачность. Много­задачность – способ организации работы ЭВМ, при котором в ее па­мяти одновременно содержатся программы и данные для выполнения нескольких задач. В составе современных МП имеются аппаратно-программные средства, позволяющие эффективно организовать многозадачный ре­жим, в том числе системы прерывания и защиты памяти.

Система прерываний обрабатывает запросы на прерывание как от внешних устройств, так и от внутренних блоков МП. Прерывание – временное прекращение выполнения команд программы с сохранением информации о ее текущем состоянии и передачей управления специальной программе – обработчику прерываний. Поступление за­проса на прерывание от внутреннего блока МП свидетельствует о воз­никновении исключительной ситуации, например о переполнении раз­рядной сетки. Внешнее прерывание может быть связано с обслуживани­ем запросов от периферийных устройств. Требуя своевременного обслу­живания, внешнее устройство посылает запрос прерывания МП. МП в ответ приостанавливает нормальное выполнение текущей программы и переходит на обработку этого запроса, чтобы в дальнейшем выполнить определенные действия по вводу-выводу данных. После совершения та­ких действий происходит возврат к прерванной программе.

Защита памяти от несанкционированного доступа в многозадачном режиме осуществляется с помощью системы привилегий, регулирующих доступ к тому или иному сегменту памяти в зависимости от уровня его защищенности и степени важности.

Обмен информацией между блоками МП происходит через магист­раль микропроцессора, включающую шину адреса, двунаправленную шину данных и шину управления.Шина устройство, служащее для передачи данных и управляющих сигналов между компонентами компьютера. Шина состоит из линий электрических соединений.

Шина адреса используется для передачи адресов ячеек памяти и реги­стров для обмена информацией с внешними устройствами.

Шина данных обеспечивает передачу информации между МП, памя­тью и периферийными устройствами. Шина двунаправленная, т.е. позволяет осуществлять пересылку данных как в прямом, так и в обратном на­правлении.

Шина управления предназначена для передачи управляющих сигна­лов – управления памятью, управления обменом данных, запросов на прерывание и т.д.

Системная магистраль выполняется в виде совокупности шин (кабелей), используемых для передачи данных, адресов и управляющих сигналов. Количество линий в адресно-информационной шине определя­ется разрядностью кодов адреса и данных, а количество линий в шине управления – числом управляющих сигналов, используемых в ЭВМ.

Внутренняя память ЭВМ состоит из оперативной памяти и посто­янной памяти.

Оперативная память (ОП) (или оперативное запоминающее устройство – ОЗУ) – функциональная часть ЭВМ, предназначенная для хранения и (или) выдачи входной информации, про­межуточных и окончательных результатов, вспомогательной информации. В памяти машины находятся также программы решения задач, через ко­манды которых осуществляется управление работой всей машины. Каждая ячейка памяти имеет свой адрес, который выражается числом. Оперативная память является энергозависимой: при отключении питания информация в ОП теряется.

С точки зрения физического принципа действия различают дина­мическую память и статическую память. Ячейки динамической памяти можно представить в виде микроконденсаторов, способных накапливать заряд на своих обкладках. Недостатком этого типа является то, что заряды ячеек имеют свойство рассеи­ваться в пространстве. Для этого в компьютере происходит постоянная регенерация (освежение, подзарядка) ячеек оперативной памяти. Регенерация осуществляется несколько десятков раз в секунду и вызывает непроизводительный расход ресурсов вычислительной системы. Ячейки статической памяти можно представить как электронные микро­элементы – триггеры, состоящие из нескольких транзисторов. В триггере хранится не заряд, а состояние (включен/выключен), поэтому этот тип памяти обеспечивает более высокое быстродействие, хотя технологически он сложнее и, соответственно, дороже.

Основные параметры, характеризующие память, – емкость и время обращения к памяти.

Емкость памяти – количество байт информации, которое можно за­писать в памяти. При этом словом является упорядоченная последователь­ность символов алфавита конечной длины. Ячейка памяти – часть памяти, содержащая слово.

Емкость памяти можно выразить количеством содержащихся в ней слов или ячеек. Длина ячейки памяти измеряется количеством битов (один бит равен одному двоичному разряду) или байтов (один байт содержит во­семь битов). Ячейка памяти может вмещать информацию разной длины или разного формата. Формат измеряется словом, двойным словом или полусловом в зависимости от принятого для данной ЭВМ способа представле­ния информации.

Время обращения – интервал времени между началом и окончанием ввода (вывода) информации в память (из памяти). Оно характеризует затра­ты времени на поиск места и запись (чтение) слова в память (из памяти).

Постоянная память (ПП). Эта память предназначена только для чтения. Она не является энергозависимой, ис­пользуется для хранения системных программ, в частности так называе­мой базовой системы ввода-вывода (BIOS – Basic Input and Output System), вспомогательных программ и т.п. Программы, хранящиеся в ПП, предназначены для постоянного использования МП.

Контроллеры (К) служат для управления внешними устройствами (ВУ). Каждому ВУ соответствует свой контроллер. Электронные моду­ли-контроллеры реализуются на отдельных печатных платах, вставляе­мых внутрь системного блока. Такие платы часто называют адаптерами ВУ (от адаптировать – приспосабливать). После получения команды от МП контроллер функционирует автономно, освобождая МП от выпол­нения специфических функций, требуемых для того или другого кон­кретного ВУ.

Контроллер содержит регистры двух типов – регистр состояния (управления) и регистр данных. Эти регистры часто называют портами ввода-вывода. За каждым портом закреплен определенный номер – адрес порта. Через порты пользователь может управлять ВУ, используя ко­манды ввода-вывода. Программа, выполняющая по обращению из ос­новной выполняемой программы операции ввода-вывода для конкрет­ного устройства или группы устройств ЭВМ, входит в состав ядра операционной системы ЭВМ.

Для ускорения обмена информацией между МП и внешними устрой­ствами в ЭВМ используется прямой доступ к памяти (ПДП). Контрол­лер ПДП, получив сигнал запроса от внешнего устройства, принимает управление обменом на себя и обеспечивает обмен данными с ОП, минуя центральный МП. В это время микропроцессор продолжает без преры­вания выполнять текущую программу. Прямой доступ к памяти, с одной стороны, освобождает МП от непосредственного обмена между памятью и внешними устройствами, а с другой стороны, позволяет значительно быстрее по сравнению с режимом прерываний удовлетворять запросы на обмен.

Основной цикл работы ЭВМ

Рассмотрим последовательность действий при вы­полнении команды в ЭВМ. Рабочий цикл в общем виде одинаков для всех фон-неймановских машин.

Важной составной частью фон-неймановской архи­тектуры является счетчик адреса команд. Этот специальный внутренний регистр процессора всегда указывает на ячейку памяти, в которой хранится следующая команда программы. При включении питания или при нажатии на кнопку сброса (начальной установки) в счетчик аппаратно заносится стартовый адрес находящей­ся в ПЗУ программы инициализации всех устройств и начальной загрузки. Даль­нейшее функционирование компьютера определяется программой. Таким образом, вся деятельность ЭВМ – это непрерывное выполнение тех или иных программ, причем программы эти могут в свою очередь загружать новые программы и т.д.

Каждая программа состоит из отдельных машинных команд. Каждая машинная команда, в свою очередь, делится на ряд элементарных унифицированных состав­ных частей, которые принято называть тактами. В зависимости от сложности команды она может быть реализована за разное число тактов. Например, пересыл­ка информации из одного внутреннего регистра процессора в другой выполняется за несколько тактов, а для перемножения двух целых чисел их требуется на порядок больше. Существенное удлинение команды происходит, если обрабатываемые данные еще не находятся внутри процессора и их приходится считывать из ОЗУ.

При выполнении каждой команды ЭВМ проделывает определенные стандарт­ные действия:

1) согласно содержимому счетчика адреса команд, считывается очередная ко­манда программы (ее код обычно заносится на хранение в специальный регистр УУ, который носит название регистра команд);

2) счетчик команд автоматически изменяется так, чтобы в нем содержался адрес следующей команды (в простейшем случае для этой цели достаточно к текущему значению счетчика прибавить некоторую константу, определяющуюся длиной команды);

3) считанная в регистр команд операция расшифровывается, извлекаются необ­ходимые данные и над ними выполняются требуемые действия.

Затем все описанные действия циклически повторяются.

Рассмотренный основной алгоритм работы ЭВМ позволяет шаг за шагом вы­полнить хранящуюся в ОЗУ линейную программу. Если же требуется изменить порядок вычислений для реализации развилки или цикла, достаточно в счетчик команд занести требуемый адрес.

В современных компьютерах для ускорения основного цикла выполнения команды используется метод конвейеризации (иногда применяется термин “опережающая выборка”). Идея состоит в том, что несколько внутренних устройств процессора работают парал­лельно: одно считывает команду, другое дешифрует операцию, третье вычисляет адреса используемых операндов и т.д. В результате по окончании команды чаще всего оказывается, что следующая уже выбрана из ОЗУ, дешифрована и подготов­лена к исполнению. Отметим, что в случае нарушения естественного порядка выполнения команд в программе (например, при безусловном переходе) опере­жающая выборка оказывается напрасной и конвейер очищается. Следующая за переходом команда выполняется дольше, так как чтобы конвейер “заработал на полную мощность”, необходимо его предварительно заполнить. Иными словами, в конвейерной машине время выполнения программы может зависеть не только от составляющих ее команд, но и от их взаимного расположения.

Накопители информации

Хранение и накопление информации вызвано многократным ее исполь­зованием, применением постоянной информации, необходимостью ком­плектации первичных данных до их обработки.

Для хранения информации в ЭВМ используют различного рода накопители, общая емкость которых, как правило, в сотни раз превосходит емкость памяти компьютера.

Внешние запоминающие устройства (ВЗУ) обеспечивают долговременное хране­ние программ и данных. Наиболее распространены следующие типы ВЗУ: накопи­тели на магнитных дисках (НМД); их разновидности – накопители на гибких магнитных дисках (НГМД) и накопители на жестких магнитных дисках (НЖМД); накопители на магнитных лентах (НМЛ); накопители на оптических дисках.

Соответственно физическими носителями информации, с которыми работают эти устройства, являются магнитные диски (МД), магнитные ленты (МЛ) и оптиче­ские диски.

Принцип записи информации на магнитных носителях основан на изменении намагниченности отдельных участков магнитного слоя носителя (диска, ленты). Запись осуществляется с помощью магнитной головки: электрические сигналы, возникающие под управлением электронного блока, возбуждают в ней магнитное поле, воздействующее на носитель и оставляющее намагниченные участки на заранее размеченных дорожках. При считывании информации эти намагниченные участки индуцируют в магнитной головке слабые токи, которые превращаются в двоичный код, соответствующий ранее записанному.

Накопители на магнитных дисках включают в себя ряд систем:

· электромеханический привод, обеспечивающий вращение диска;

· блок магнитных головок для чтения-записи;

· системы установки (позиционирования) магнитных головок в нужное для записи или чтения положение;

· электронный блок управления и кодирования сигналов.

НГМД – устройство со сменными дисками (их часто называют “дискетами”). Несмотря на относительно невысокую информационную емкость дискеты, НГМД продолжают играть важную роль в качестве ВЗУ, поскольку поддерживают ряд функций, которые не обеспечивают другие накопители. Среди них:

· возможность транспортировки информации на любые расстояния;

· обеспечение конфиденциальности информации (дискету можно положить в карман сразу после окончания сеанса работы).

Дискета – гибкий тонкий пластиковый диск с нанесенным (чаще всего на обе стороны) магнитным покрытием, заключенный в достаточно твердый – картонный или пластиковый – конверт для предохранения от механических повреждений. Информация на диск наносится вдоль концентрических окружностей – дорожек. Каждая дорожка разбита на несколько секторов (обычно 9 или 18) – минимально возможных адресуемых участков. Стандартная емкость сектора – 512 байт. На двухсторонней дискете две одинаковые дорожки по обе стороны диска образуют цилиндр. Процедура разметки нового диска – нанесение секторов и дорожек называется форматированием. Иногда приходится прибегать к переформатирова­нию диска, на котором уже есть информация; последняя в таком случае практически обречена на уничтожение.

Тип дискеты обычно указывается на ее конверте:

DS (double side) -двухсторонняя;

DD (double density) – двойной плотности;

HD (high density) – высокой плотности.

Возможны сочетания типа DS/DD, DS/HD и др.

Стандартный размер (диаметр) дискет 89 мм (3,5 дюйма). Появились, но пока не получили широко­го распространения, дискеты диаметром 51 мм.

Важнейшая, с точки зрения пользователя, характеристика дискеты – информа­ционная емкость. Чаще всего она находится в диапазоне от одного до полутора мегабайт, хотя созданы дискеты с емкостью до 10 Мбайт. Специальные дискеты для резервного копирования (так называемые Zip-диски, для работы с которыми нужны особые дисководы) имеют емкость 100 Мбайт и более. Другие важнейшие характе­ристики – скорость доступа к определенному участку информации и скорость записи или считывания информации – определяются не столько самой дискетой, сколько возможностями НГМД.

Жесткий диск сделан из сплава на основе алюминия и также покрыт магнитным слоем. Он помещен в неразборный корпус, встроенный в системный блок компью­тера. По всем профессиональным характеристикам жесткие диски (и соответствую­щие накопители) значительно превосходят гибкие. Однако, жесткий диск не предназначен для транспортировки информации, и это не позволило накопителям на жестких дисках вытеснить НГМД.

Первые накопители на оптических дисках появились в начале 70-х годов, но ши­рокое распространение получили значительно позже. Существует несколько разно­видностей оптических дисков, предназначенных для устройств, допускающих только чтение (CD-ROM, т.е. Compact Disk Reed Only Memory – компакт-диск только для чтения), для устройств, допускающих хотя бы однократную запись информации на рабочем месте пользователя и для устройств, позволяющих, подоб­но накопителям на магнитных дисках, многократную перезапись информации. CD-ROM диск, запись на который производится один раз при его создании и не может быть изменена, представляет собой прозрачную поликарбонатную (вид стекла) пластинку, одна сторона которой покрыта тончайшей алюминиевой пленкой, играющей роль зеркального отражателя, поверх которой нанесен защитный слой лака. Информация на ней представляется подобно тому, как на старых граммофон­ных пластинках – чередованием углублений и пиков, однако не в аналоговом, а в цифровом (двоичном) коде. Этот рельеф создается при производстве механическим путем (контактом с твердой пластинкой – матрицей). Информация наносится вдоль тончайших дорожек. Считывание информации осуществляется путем сканирования дорожек лазерным лучом, который по-разному отражается от углублений и пиков (по этому отражению восстанавливается записанный двоичный код). Вдоль дорожек оптического диска со скоростью 200 – 500 раз в минуту пробегает лазерный луч. При создании дисков, позволяющих вести многократную перезапись, доминирует магнито-оптический принцип (CD-МО диски). В основу положен следующий физический принцип: коэффициент отраже­ния лазерного луча от по-разному намагниченных участков диска с особым обра­зом нанесенным магнитным покрытием различен. Таким образом, запись на МО-диски магнитная, а считывание – оптическое (лазерным лучом).

У оптических дисков емкость записи и скорость доступа к информации того же порядка, что у жестких дисков, а по надежности хранения информации оптические диски превышают жесткие диски.

По мере снижения стоимости оборудования CD-МО диски могут вытеснить гибкие магнитные диски, так как обладая значительно превосходящими профессиональными характеристи­ками, обеспечивают все функции ГМД.

Накопители на магнитных лентах имели огромное значение для ЭВМ первых поколений. По мере развития ЭВМ НМЛ оттеснялись на периферию в списке ВЗУ. Ясно, что по скорости доступа к информации НМЛ всегда будут многократно проигрывать дисковым накопителям – ведь для того, чтобы считать информацию на некотором месте ленты, необходимо отмотать предшествующий ее кусок с начала. Однако по-прежнему на лентах хранят большие объемы информации, которая не является оперативной, но требует очень надежного хранения, а также конфиденциальности. На персональных компьютерах иногда используют специальный кассетный накопитель на магнитных лентах, размеры которого совпадают с размерами НГМД и который можно вставить на место последнего – стриммер.

Внешние устройства ЭВМ

Эффективность использования ЭВМ в большой степени определя­ется количеством и типами внешних устройств, которые могут приме­няться в ее составе. Внешние устройства обеспечивают взаимодействие пользователя с ЭВМ. Широкая номенклатура внешних устройств, раз­нообразие их технико-эксплуатационных и экономических характери­стик дают возможность пользователю выбрать такие конфигурации ЭВМ, которые в наибольшей мере соответствуют его потребностям и обеспечивают рациональное решение его задач.

Внешние устройства составляют до 80% стоимости ЭВМ и оказы­вают значительное (иногда даже решающее) влияние на характеристики машины в целом.

Конструктивно каждая модель ЭВМ имеет так называемый базо­вый набор внешних устройств – клавиатуру и дисплей. Пользователь, как правило, сам подбирает желательное ему печатающее устройство. В случае необходимости к ЭВМ могут подключаться также дополнительные внешние устройства, например сканеры, стримеры, плоттеры или диджитайзеры. В последние годы многие фирмы прилагают значительные усилия для разработки совершенно новых видов внешних устройств, ориентированных на стре­мительно растущие запросы пользователей, в частности для приложений в области мультимедиа.

Устройства ввода информации. Клавиатура (клавишное устройство) реализует диалоговое об­щение пользователя с ЭВМ:

· ввод команд пользователя, обеспечивающих доступ к ресурсам ЭВМ;

· запись, корректировку и отладку программ;

· ввод данных и команд в процессе решения задач.

Центральную часть клавиатуры обычно занимают клавиши букв латинского и русского алфавита, служебных знаков (!, ”,:, % и др.), а также цифровые клавиши. В большинстве случаев одна клавиша ис­пользуется для ввода нескольких разных знаков, причем переход меж­ду ними производится за счет одновременного нажатия соответствую­щей клавиши и одной и/или двух служебных функциональных клавиш (обычно – клавиш Shift, Alt, Ctrl). В большинстве моделей клавиатуры с правой стороны размещается дополни­тельная цифровая клавиатура, что создает удобства при необходимо­сти частого ввода чисел. По периферии клавиатуры размещаются слу­жебные функциональные клавиши: Enter, Esc, Delete, Insert, Tab и др., а также “программируемые” функциональные клавиши (F1 – F12). Функциональные клавиши в программах выполняют в основном спе­циальные операции. К примеру, клавиша Esc обычно означает “отмену” или “возврат”, клавиша Insert – “вставку” и т.п. Назначение программируемых функциональных клавиш F1 – F12 более гибко: оно, как правило, определяется в соответствующих программах и приво­дится в их документации. Служебные клавиши (Shift, Alt, Ctrl) и инди­каторы режимов (Print Screen, Caps Lock, Break) служат для пере­ключения назначения алфавитно-цифровых клавиш, вывода “образа экрана дисплея” на принтер, изменения режима работы и прерывания программ. Клавиши управления (<,>,^,v) необходимы для пози­ционирования курсора на экране дисплея. Ряд клавиш обеспечивают перемещение курсора в начальную или конечную позицию на строке экрана дисплея (Home, End), а также на страницу вперед или назад (PgUp и PgDn).

Клавиатура ЭВМ передает МП не код символа, а порядковый номер нажатой клавиши и продолжитель­ность времени каждого нажатия. Интерпретация смысла нажатой кла­виши выполняется программным путем. Таким образом, кодировка кла­виши оказывается независимой от кодировки символов, что значительно упрощает работу с клавиатурой.

Общение пользователя с ЭВМ облегчается с помощью различных манипуляторов. Наиболее распространенным из них является так назы­ваемая мышь. Мышь представляет собой небольшую коробочку с двумя или тремя клавишами и утопленным свободно вращающимся в любом направлении шариком на нижней поверхности. Коробочка под­ключается к компьютеру при помощи специального кабеля. Пользова­тель, перемещая мышь по поверхности стола (обычно для этого исполь­зуются специальные резиновые коврики), позиционирует указатель мы­ши (стрелку, прямоугольник) на экране дисплея, а нажатием клавиш вы­полняет определенное действие, связанное с соответствующей клавишей (например, выполняет определенный пункт меню) Мышь требует специальной программной поддержки.

В портативных ЭВМ мышь обычно заменяется особым, встроенным в клавиатуру, шариком на подставке с двумя клавишами по бокам, называемым трекбол. Позиционирование указателя трекбола на экране дисплея производится вращением этого шарика. Клавиши трекбола имеют то же значение, что и клавиши мыши. Несмотря на наличие трекбола, пользователь портативной ЭВМ может использовать и обычную мышь, подключив ее к соответствующему порту.

Для непосредственного считывания графической информации с бу­мажного или иного носителя в ЭВМ применяются оптические сканеры. Сканеры бывают настольные, позволяющие обрабатывать весь лист бу­маги или пленки целиком, а также ручные. Ручные сканеры проводят над нужными рисунками или текстом, обеспечивая их считывание. Вве­денный при помощи сканера рисунок распознается ЭВМ с помощью специального программного обеспечения. Рисунок может быть не толь­ко сохранен, но и откорректирован по желанию пользователя соответст­вующими графическими пакетами программ.

Для той же цели, т.е. для ввода рисунков в ЭВМ, может использо­ваться также световое перо и различные диджитайзеры.

К ручным манипуляторам относится и джойстик, представ­ляющий собой подвижную рукоять с одной или двумя кнопками, при по­мощи которой можно позиционировать указатель на экране дисплея. Кноп­ки имеют то же назначение, что и клавиши мыши. Джойстик использу­ется в первую очередь для игровых применений.

Устройства вывода информации. Самым популярным из устройств вывода информации является дисплей – уст­ройство визуального отображения текстовой и графической информации. Дисплей относится к числу неотъемлемых принадлежностей компьютера. Есть и параллель­ные термины, обозначающие почти то же самое, – “видеотерминал”, “видеомонитор” (хотя есть и смысловые оттенки: “монитор” – устройство управления чем-то, “терминал” – удаленное устройство доступа).

Дисплеи классифицируются по нескольким разным параметрам, отражающим их назначение в конкретной компьютерной системе и возможности. Бывают дисплеи монохромные и цветные. Монохромный дисплей производит отображе­ние в двух цветах – черном и белом, либо зеленом и черном и т.д. Высококачест­венный цветной дисплей может воспроизводить десятки основных цветов и тысячи оттенков.

Бывают дисплеи графические и алфавитно-цифровые (последние, спо­собные отображать лишь ограниченный набор основных символов используемого алфавита, почти исчезли из обычного обихода). Графический дисплей может отображать как символы, так и любое изображение, которое можно построить из отдельных точек в пределах разрешающей способности.

По физическим принципам, лежащим в основе конструкций дисплеев, подав­ляющее большинство их относится к дисплеям на базе электронно-лучевых трубок и к жидкокристаллическим дисплеям (последние особенно часто встречаются у портативных компьютеров). У первых формирование изображения производится на внутренней поверхности экрана, покрытого слоем люминофора – вещества, светя­щегося под воздействием электронного луча, генерируемого специальной “электронной пушкой” и управляемого системами горизонтальной и вертикальной развертки. Жидкокристаллический экран состоит из крошечных сегментов, запол­ненных специальным веществом, способным менять отражательную способность под воздействием очень слабого электрического поля, создаваемого электродами, подходящими к каждому сегменту.

При выводе на экран любого изображения, независимо от того, в растровом или векторном форматах оно зафиксировано в графических файлах, в видеопамяти формируется информация растрового типа, содержащая сведения о цвете каждого пиксела, задающего наиболее мелкую деталь изображения. Каждый пиксел одно­значно связан с долей видеопамяти – несколькими битами, в которых программным путем задается яркость (и, при цветном экране, цветность) свечения этого пиксела. Специальная системная программа десятки раз в секунду считывает содержимое видеопамяти и обновляет содержимое каждого пиксела, тем самым создавая и поддерживая на экране изображение.

Основные характеристики дисплеев с точки зрения пользователя таковы: разрешающая способность, число воспроизводимых цветов (для цветного дисплея) или оттенков яркости (для монохромного).

В настоящее время начался промышленный выпуск плазмен­ных дисплеев. В основе – возможность управлять возникновением электрических разрядов в некоторых газах и сопровождающим их свечением. Такие дисплеи обладают высоким качеством изображения и могут иметь значительно большие, чем у привычных компьютеров, размеры экранов при небольшой толщине (экран с диагональю около 1 м при толщине 8-10 см).

Огромную роль при выводе информации играют разнообразные печатающие устройства – принтеры. Наличие дисплея на современных компьютерах позволяет, работая в интерактивном режиме, экономить огромное количество бумаги, но все равно наступает, как правило, момент, когда необходима так называемая “твердая копия” информации – текст, данные, рисунок на бумаге. В процессе эволюции принтеры прошли следующий путь. Первые копировали пишущую машинку, имея ударные клавиши с буквами, цифрами и т.д. Под управлением процессора та или иная клавиша наносила удар по красящей ленте, оставляющей след на бумаге. Таких принтеров давно нет, их прямые наследники – точечно-матричные принтеры ударного типа – располагают перемещающейся вдоль строки печатающей голов­кой, содержащей от 9 до 24 игл, каждая из которых может независимо от остальных наносить удар по ленте. Это позволяет формировать изображения как букв и цифр, так и любых других символов, а также достаточно сложные рисунки и чертежи. Для хранения и подачи ленты используют специальную пластмассовую коробочку – картридж. Принтеры стали “интеллектуальными”, т.е. имеют собственное ОЗУ и электронный блок управления для того, чтобы разгрузить основное ОЗУ и не отнимать в процессе печати время у центрального процессора.

Особенность современного принтера – возможность поддержки многих шриф­тов. Часть шрифтов “прошита” в памяти принтера и задается нажатием клавиш на его панели. Еще больше шрифтов являются “загружаемыми”, т.е. задаются той программой, которая обращается к устройствам печати. При печати “собственными” шрифтами принтер обычно работает быстрее, так как комбинации ударов игл выбираются из знакогенерато­ра принтера. Загружаемые шрифты требуют дополнительного времени на загруз­ку до начала печати соответствующей программы – знакогенератора; самая медленная печать осуществляется в графическом режиме, который требует посто­янной пересылки в принтер информации о текущем режиме работы каждой иглы. Последний (графический) режим с появлением системы “Windows” стал очень распространенным; он не включает предварительной пересылки шрифтов в память принтера.

Приведем названия наиболее распространенных шрифтов, чаще всего “прошитых” в принтерах: roman – шрифт пишущей машинки, bold-face – полужир­ный, italic – курсив, condenced – сжатый.

Качество печати текста определяется не только шрифтом и классом принтера, но и числом точек, из которых формируется символ. Наиболее быстрый режим с минимально возможным числом точек и весьма невысоким качеством печати – режим черновой печати (draft), наиболее высококачественный – режим SLQ (Super Letter Quality). На одном и том же принтере соотношение скоростей печати в разных режимах может достигать 1:10.

Все чаще на рабочих местах пользователей персональных компьютеров появля­ются вместо точечно-матричных струйные или лазерные принтеры. Струйные принтеры вместо головки с иглами имеют головку со специальной краской и микросоплом, через которую эта краска “выстреливается” струйкой на бумагу (и быстро сохнет). Для формирования изображения либо струйка краски может отклоняться специально созданным электрическим полем (так как она электризует­ся в момент выхода из сопла), либо (чаще) головка имеет столбец из нескольких сопел – наподобие матрицы игл точечно-матричного принтера.

Струйные принтеры могут быть цветными, они смешивают на бумаге красители, порознь распыляемые разными соплами. Изображение, формируемое струйными принтерами, по качеству превосходит аналогичное, получаемое на точечно-матричных. Дополнительное достоинство при этом – меньший уровень шума при работе.



Поделиться:


Последнее изменение этой страницы: 2016-04-20; просмотров: 1086; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.224.33.107 (0.067 с.)