Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Сопротивление, сила, работа и мощность резания

Поиск

Суммарную равнодействующую всех сил, действующих на резец со стороны обрабатываемого металла, можно назвать силой сопротивления резанию (стружкообразованию) R= . Где: Рz – сила резания, или тангенциальная сила, касательная к поверхности резания и совпадающая с направлением главного движения; Рх – осевая сила, или сила подачи, действующая параллельно оси заготовки в направлении, противоположном движению подачи; Ру – радиальная сила, направленная перпендикулярно к оси обрабатываемой заготовки.

На силы резания влияют следующие факторы: обрабатываемый материал, глубина резания, подача, передний угол (угол резания), главный угол в плане, радиус закругления при вершине, смазочно-охлаждающие технологические среды, скорость резания и износ инструмента.

Во избежание смещения резца от действия сил Ру и Рх он должен быть прочно закреплен в резцедержателе. Напряжения, вызванные в державке силами Рz, Ру и Рх, не должны повышать напряжений, допускаемых материалом державки по его прочности и жесткости. Большие напряжения создаются и в режущей части инструмента, поэтому сила Рz должна быть меньше силы, допустимой для режущей части резца.

Сила резания может быть рассчитана по формуле: Р=Ср×tХр×SУp×НВZp, где коэффициент Ср и показатели степени хр, ур и zр для всех трех составляющих силы резания – справочные величины (Грановский 177). Полученные значения составляющих сил резания необходимо умножить на поправочные коэффициенты, учитывающие влияние: а) главного угла в плане j; б) радиуса r0 закругления вершины резца; в) максимального линейного износа h3мах.

Работа резания в общем случае (в джоулях) рассчитывается по формуле: W=Pz×L, где Рz – сила резания, действующая в направлении скорости резания (Н); L – путь, проходимый режущим инструментом, м.

Эффективную мощность, Вт, затрачиваемую на резание, рассчитывают по уравнению Ne=Рu/60, где u - скорость резания, м/мин; Р=Рz – сила резания, Н. С учетом КПД станка легко подсчитать и необходимую (расчетную) мощность электродвигателя: Nэл=Ne/h.

КОНТАКТНЫЕ ПРОЦЕССЫ

В результате высоких скоростей деформации процесса резания резко меняются физико-механические свойства материала – возрастает число возможных плоскостей скольжения, изменяются соотношения между его пределом текучести и временным сопротивлением, возрастает химическая активность материала и т.д.

Экспериментальные данные показывают, что только за счет образования новой поверхности в пределах площадки контакта стружки с передней поверхностью лезвия в секунду возникает около 1015 свободных связей. И хотя продолжительность их существования в несвязанном состоянии 10-12с, на передней поверхности лезвия успевает образовываться так называемый граничный слой. Этот чрезвычайно тонкий слой возникает благодаря мгновенному процессу схватывания двух разнородных материалов и сопровождающих его явлений адгезии и диффузии. В условиях действия внешней среды к этим явлениям присоединяются также адсорбция (поглощение вещества из газовой или жидкой среды поверхностным слоем твердого тела) и химические реакции вновь возникающих при резании поверхностей с внешней средой.

Граничный слой в свою очередь состоит из нескольких слоев – переходного между поверхностями инструмента и обрабатываемого материала и последующих. В пределах переходного слоя наблюдается большое количество пор, образовавшихся между выступающими зернами инструментального материала и внутри сильно деформированного обрабатываемого металла. Граничный слой формируется в результате действия явления переноса – перенесения одного материала на поверхность другого в результате твердофазных взаимодействий между ними. Перенос – явление чрезвычайно сложное и проявляется на макро- (налипы, обволакивание, намазывание), микро- и субмикроскопическом уровнях. Для него характерны неоднородность рельефа контактной поверхности вследствие различных скоростей схватывания и разрушения пары инструментальный – обрабатываемый материалы на различных участках контакта; фазовые превращения, обусловленные взаимодействием данной пары между собой и внешней средой; наличие текстуры; образование различных микро- и субмикроструктур и др. В связи со сложностью строения и названными свойствами граничного слоя он в отличие от обрабатываемого и инструментального материалов значительно хуже травится, почему и получил название «белый слой».

Граничный слой служит своего рода основой, влияющей на другие контактные процессы. Например, он может сохранять свою малую толщину или служить первоосновой для образования наростов значительной высоты; защищать площадки контакта от изнашивания или, наоборот, способствовать ему; изменять условия трения и т.д.

Под наростом понимают клиновидную, относительно неподвижную область материала, расположенную на передней поверхности лезвия у его режущей кромки.

Нарост – сложное по химическому составу агрегатное состояние металла из продуктов взаимодействия обрабатываемого и инструментального материалов и окружающей среды. Он состоит из слоев сильно деформированного обрабатываемого материала с включениями оксидов и карбидов обрабатываемого и инструментального материалов, а также кобальта, входящего в состав твердого сплава. Строение нароста сложное: основная часть – это «третье тело», прочно соединенное с поверхностью инструмента, на которое наращиваются последующие слои сходящей стружки. При разрушении нарост частично уносится стружкой, частично поверхностью детали, в результате чего увеличивается шероховатость.

 
 

При относительно низких скоростях резания образуется нарост первого вида.

Он имеет форму, близкую к треугольной, мало развит по высоте, имеет небольшой радиус округления вершины.

При более высоких скоростях образуется нарост второго вида значительной высоты, с большими передним и задним углами, достигающими 5…12°. Основание нароста достаточно стабильно, а его верхняя часть часто разрушается. С дальнейшим возрастанием скорости резания этот нарост преобразуется в нарост третьего вида. Его форма становится прямоугольной или близкой к трапецеидальной, имеет значительную высоту. Наросты такого вида наиболее стабильны, их срыв происходит крупными частицами или полностью.

 
 

Еще при более высоких резания возникает нарост четвертого вида, по форме и расположению близкий к первому. Это – нестабильное образование, постоянно изменяющееся во всем объеме. Разрушение его происходит путем постоянного «стекания» с лезвия.

 

 



Поделиться:


Последнее изменение этой страницы: 2016-04-19; просмотров: 481; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.1.63 (0.009 с.)