Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Дыры» в пространстве и времениСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Черные дыры – это порождение гигантских сил тяготения. Они возникают, когда в ходе сильного сжатия большей массы материи возрастающее гравитационное поле ее становится настолько сильным, что не выпускает даже свет, из черной дыры не может вообще ничто выходить. В нее можно только упасть под действием огромных сил тяготения, но выхода оттуда нет. С какой силой притягивает центральная масса какое‑либо тело, находящееся на ее поверхности? Если радиус массы велик, то ответ совпадал с классическим законом Ньютона. Но когда принималось, что та же масса сжата до все меньшего и меньшего радиуса, постепенно проявлялись отклонения от закона Ньютона – сила притяжения получалась пусть незначительно, но несколько большей. При совершенно фантастических же сжатиях отклонения были заметнее. Но самое интересное, что для каждой массы существует свой определенный радиус, при сжатии до которого сила тяготения стремилась к бесконечности! Такой радиус в теории был назван гравитационным радиусом. Гравитационный радиус тем больше, чем больше масса тела. Но даже для астрономических масс он очень мал: для массы Земли это всего один сантиметр. В 1939 году американские физики Р.Оппенгеймер и Х.Снайдер дали точное математическое описание того, что будет происходить с массой, сжимающейся под действием собственного тяготения до все меньших размеров. Если сферическая масса, уменьшаясь, сожмется до размеров, равных или меньших, чем гравитационный радиус, то потом никакое внутреннее давление вещества, никакие внешние силы не смогут остановить дальнейшее сжатие. Действительно, ведь если бы при размерах, равных гравитационному радиусу, сжатие остановилось бы, то силы тяготения на поверхности массы были бы бесконечно велики и ничто с ними не могло бы бороться, они тут же заставят массу сжиматься дальше. Но при стремительном сжатии – падении вещества к центру – силы тяготения не чувствуются. Всем известно, что при свободном падении наступает состояние невесомости и любое тело, не встречая опоры, теряет вес. То же происходит и со сжимающейся массой: на ее поверхности сила тяготения – вес – не ощущается. После достижения размеров гравитационного радиуса остановить сжатие массы нельзя. Она неудержимо стремится к центру. Такой процесс физики называют гравитационным коллапсом, а результатом является возникновение черной дыры. Именно внутри сферы с радиусом, равным гравитационному, тяготение столь велико, что не выпускает даже свет. Эту область Дж. Уиллер назвал в 1968 году черной дырой.
Название оказалось крайне удачным и было моментально подхвачено всеми специалистами. Границу черной дыры называют горизонтом событий. Название это понятно, ибо из‑под этой границы не выходят к внешнему наблюдателю никакие сигналы, которые могли бы сообщить сведения о происходящих внутри событиях. О том, что происходит внутри черной дыры, внешний наблюдатель никогда ничего не узнает. Итак, вблизи черной дыры необычно велики силы тяготения, но это еще не все. В сильном поле тяготения меняются геометрические свойства пространства и замедляется течение времени. Около горизонта событий кривизна пространства становится очень сильной. Чтобы представить себе характер этого искривления, поступим следующим образом. Заменим в наших рассуждениях трехмерное пространство двумерной плоскостью (третье измерение уберем) – нам будет легче изобразить ее искривление. Пустое пространство изображается плоскостью. Если мы теперь поместим в это пространство тяготеющий шар, то вокруг него пространство слегка искривится – прогнется. Представим себе, что шар сжимается и его поле тяготения увеличивается. Перпендикулярно пространству отложена координата времени, как его измеряет наблюдатель на поверхности шара. С ростом тяготения увеличивается искривление пространства. Наконец, возникает черная дыра, когда поверхность шара сожмется до размеров, меньше горизонта событий, и «прогиб» пространства сделает стенки в прогибе вертикальными. Ясно, что вблизи черной дыры на столь искривленной поверхности геометрия будет совсем не похожа на евклидову геометрию на плоскости. С точки зрения геометрии пространства черная дыра действительно напоминает дыру в пространстве. Обратимся теперь к темпу течения времени. Чем ближе к горизонту событий, тем медленнее течет время с точки зрения внешнего наблюдателя. На границе черной дыры его бег и вовсе замирает. Такую ситуацию можно сравнить с течением воды у берега реки, где ток воды замирает. Это образное сравнение принадлежит немецкому профессору Д.Либшеру.
Но совсем иная картина представляется наблюдателю, который в космическом корабле отправляется в черную дыру. Огромное поле тяготения на ее границе разгоняет падающий корабль до скорости, равной скорости света. И тем не менее далекому наблюдателю кажется, что падение корабля затормаживается и полностью замирает на границе черной дыры. Ведь здесь, с его точки зрения, замирает само время. С приближением скорости падения к скорости света время на корабле также замедляет свой бег, как и на любом быстро летящем теле. И вот это замедление побуждает замирание падения корабля. Растягивающаяся до бесконечности картина приближения корабля к границе черной дыры из‑за все большего и большего растягивания секунд на падающем корабле измеряется конечным числом этих все удлиняющихся (с точки зрения внешнего наблюдателя) секунд. По часам падающего наблюдателя или по его пульсу до пересечения границы черной дыры протекло вполне конечное число секунд. Бесконечно долгое падение корабля по часам далекого наблюдателя уместилось в очень короткое время падающего наблюдателя. Бесконечное для одного стало конечным для другого. Вот уж поистине фантастическое изменение представлений о течении времени. То, что мы говорили о наблюдателе на космическом корабле, относится и к воображаемому наблюдателю на поверхности сжимающего шара, когда обрадуется черная дыра. Наблюдатель, упавший в черную дыру, никогда не сможет оттуда выбраться, как бы ни были мощны двигатели его корабля. Он не сможет послать оттуда и никаких сигналов, никаких сообщений. Ведь даже свет – самый быстрый вестник в природе – оттуда не выходит. Для внешнего наблюдателя само падение корабля растягивается по его часам до бесконечности. Значит, то, что будет происходить с падающим наблюдателем и его кораблем внутри черной дыры, протекает уже вне времени внешнего наблюдателя (после его бесконечности по времени). В этом смысле черные дыры представляют собой «дыры во времени Вселенной». Конечно, сразу оговоримся, что это вовсе не означает, что внутри черной дыры время не течет. Там время течет, но это другое время, текущее иначе, чем время внешнего наблюдателя. Что же произойдет с наблюдателем, если он отважится отправиться в черную дыру на космическом корабле? Силы тяготения будут увлекать его в область, где эти силы все сильнее и сильнее. Если в начале падения в корабле наблюдатель находился в невесомости и ничего неприятного не испытывал, то в ходе падения ситуация изменится. Чтобы понять, что произойдет, вспомним про приливные силы тяготения. Их действие связано с тем, что точки тела, находящиеся ближе к центру тяготения, притягиваются сильнее чем расположенные дальше. В результате притягиваемое тело растягивается. В начале падения наблюдателя в черную дыру приливное растяжение может быть ничтожным. Но оно неизбежно нарастает в ходе падения. Как показывает теория, любое падающее в черную дыру тело попадает в область, где приливные силы становятся бесконечными. Это так называемая сингулярность внутри черной дыры. Здесь любое тело или частица будут разорваны приливными силами и перестанут существовать. Пройти сквозь сингулярность и не разрушиться не может ничто.
Но если такой исход совершенно неизбежен для любых тел внутри черной дыры, то это означает, что в сингулярности перестает существовать и время. Свойства времени зависят от протекающих процессов. Теория утверждает, что в сингулярности свойства времени изменяются настолько сильно, что его непрерывный поток обрывается, оно распадается на кванты. Здесь надо еще раз вспомнить, что теория относительности показала необходимость рассматривать время и пространство совместно, как единое многообразие. Поэтому правильнее говорить о распаде в сингулярности на кванты единого пространства‑времени. Современная наука раскрыла связь времени с физическими процессами, позвонило «прощупать» первые звенья цепи времени в прошлом и проследить за ее свойствами в далеком будущем.
Глава 3 Новые физические законы
«Если нам действительно удастся построить всеобъемлющую физическую теорию, то со временем ее основные принципы станут доступны пониманию каждого. И тогда все мы, философы, ученые, специалисты и нет, сможем принять участие в дискуссии о том, как же так получилось, что существуем мы и существует Вселенная. И если будет найден ответ на этот „последний“ вопрос, нам станет понятен замысел Бога».
Так Стивен Хокинг закончил свою недавно вышедшую книгу «От большого взрыва до черных дыр. Краткая история времени». Точка зрения Хокинга отражает традиционные представления о конечной цели физики. В прошлом ученые неоднократно утверждали, что все великие проблемы рано или поздно будут решены и теоретической физике наступит конец. В наши дни эту веру зачастую связывают с созданием «Теории Всего Сущего» – магического сверхзакона, из которого можно будет вывести все формы физической реальности – от элементарных частиц до атомов химических элементов, галактик и черных дыр. Такая теория свела бы Вселенную к формальному тождеству – абстрактному вневременному описанию. Однако утверждению о том, что физика близка к своему завершению, можно придать и совершенно иной смысл. Нобелевская конференция 1989 года в колледже Густава Адольфа (Сент‑Пол, штат Миннесота), была посвящена теме «Конец науки», но в эти слова вкладывали отнюдь не оптимистичное содержание. Организаторы конференции заявили: «Нас не покидает ощущение, что способность науки давать объективную картину действительности почти исчерпана». И далее: «Если же наука откажется от претензии открывать вневременные, универсальные законы и признает себя социальной и исторически ограниченной, то тогда уже нельзя будет утверждать, что она говорит о чем‑то реальном, лежащем вне самой науки».
Основной тезис предложенной концепции прямо противоположный: великие законы не есть «всего лишь» социальные или исторические конструкции, хотя, разумеется, любые научные представления несут на себе печать своей эпохи. Можно сказать, что и классический идеал объективности, подразумевающий отрицание времени, тоже имел свои исторические корни. Это был дерзновенный идеал, возникший на почве западной культуры в XVII веке. Идея объективной физической реальности, воплощенная в динамическом описании, была результатом первой успешной попытки включить время в математическую схему. Более двух веков – от Галилея до Больцмана – ушло на то, чтобы понять цену этого достижения: за него пришлось заплатить противоречием между симметричными фундаментальными законами физики и нарушением симметрии времени в реально протекающих процессах. Современная физика рассматривает стрелу времени как одну из существенных черт нашего мира. В последние десятилетия несколько научных направлений оспаривали привилегию придать конструктивный смысл идее, согласно которой мы живем во временном мире. Физические теории, которые сегодня строятся, – временные. Они охватывают законы и события, достоверность и вероятность. Вторжение времени в физику отнюдь не приводит к утрате объективности или познаваемости. Наоборот, оно открывает путь к новому, более глубокому пониманию. Нарушение симметрии времени на микроскопическом уровне не есть результат отказа от идеала совершенного знания. К нему нас вынуждает динамика хаоса. Сначала неустойчивость возникла как ограничение, вызванное чувствительностью к начальным условиям, но теперь мы вышли за рамки «негативных» утверждений и пришли к формулировке законов природы, охватывающих хаос и стрелу времени. Изменение самого смысла слова «хаос» от нежелательного препятствия к самостоятельному объекту познания стало наиболее фундаментальным и неожиданным результатом исследования парадокса времени. Включение в динамику вероятности и необратимости, конечно же, обусловлено глубинными процессами, идущими в самой науке. Стрела времени не проникла бы на фундаментальный уровень физики, не будь интенсивного поиска благоприятной возможности решения парадокса времени. Благоприятную возможность мы понимаем как исторический, идущий во времени диалог человека с природой. Диалог, в котором оперирование символами играет важную роль. Символьное мышление порождает свой мир, который одновременно беднее и упрощеннее, богаче и содержательнее реального мира. Мысль, оперирующая символами, усиливает те аспекты классической и квантовой физики, которые делают акцент на симметрии во времени. Воплощенную в символах мысль можно сравнить с произведением искусства. Подобно ему, она способна возбуждать и чувство восхищения, и чувство неудовлетворенности. Она бросает нам вызов, побуждая идти вперед. При этом главный побудительный стимул концепции можно кратко выразить так: «Время не может возникнуть из вне времени. Вневременные законы нельзя считать окончательной истиной, ибо такая истина делает нас чужими в этом мире и сводит к простой видимости многообразие наблюдаемых явлений» (И.Р.Пригожин, И.Стенгерс).
Ту же неудовлетворенность выражали и другие физики. Так, Роджер Пенроуз в своей книге «Новый разум императора» заметил: «Непонимание нами фундаментальных законов физики не позволяет нам схватить суть разума в физических или логических терминах». Пенроуз также особо выделяет проблему времени. Он пишет: «По моему мнению, наша физическая картина мира в той своей части, что касается природы времени, чревата серьезными потрясениями, еще более сильными, чем те, что были вызваны теорией относительности и квантовой механикой». Однако, насколько можно судить, Пенроуз ожидает решения проблемы со стороны квантовой теории гравитации, которая должна будет объединить эти две теории. Стратегия Пригожина более консервативна, поскольку он исходит из динамической неустойчивости, лежащей в фундаменте физики уже сегодня. Но Пенроуз прав в том, что нам действительно необходимо «новое понимание». Каждый период развития науки имеет свои ключевые нерешенные проблемы, вехи, указывающие направление дальнейшего развития. Величайшее удивление вызывает тот факт, что разрешение парадокса времени, возникшего в результате неудачной попытки Больцмана и Планка дать динамическую интерпретацию стрелы времени, позволило решить и два других парадокса – квантовый и, до некоторой степени, космологический. И все же это можно было ожидать. Все три парадокса тесно связаны между собой. Исключение стрелы времени с необходимостью приводит к двойственному описанию Вселенной: с одной стороны, к микроскопическим, обратимым во времени законам, а с другой, – к феноменологическим законам с нарушенной симметрией времени. Здесь мы снова встречаемся с традиционным декартовским дуализмом между материей, характеризуемой протяженностью, и человеческим духом с его способностью мыслить. Общая теория относительности и квантовая механика служат хорошими примерами такого дуализма: первая стремится к геометрическому видению мира (утонченной форме декартовской протяженности); другая, с ее амплитудами вероятности, может быть уподоблена потенциальным, мыслимым возможностям (в отличие от актуальных, наблюдаемых вероятностей). Следует ли в таком случае рассматривать мир как потенциальную возможность для наших наблюдений? Некоторые физики заходят так далеко, что в квантовой механике отводят человеческому разуму ключевую роль: по их мнению, мир, описываемый в терминах волновых функций, как бы жаждет обрести наблюдателя, который сможет актуализировать одну из его потенциальных возможностей. В этом смысле организаторы Нобелевской конференции были правы: мы действительно подошли к «концу науки» – такой науки, которая связывает познание с открытием детерминистских вневременных законов, лежащих за рамками становления. Вспомним, что для Эйнштейна любое отклонение от этого идеала означало отказ от понимания мира, от основного назначения науки. Однако мы не можем по очевидным причинам согласиться с такими взглядами, сужающими смысл познания. Там, где речь идет о живых существах, мы не отождествляем понимание с послушным выполнением правил – мы отказались бы признать настоящей кошку, поведение которой всегда было бы предсказуемым. А вот в физике мы зачастую думаем как раз наоборот. Нельзя не согласиться с Владимиром Набоковым, высказавшим такую мысль: «То, что полностью контролируемо, никогда не бывает вполне реальным. То, что реально, никогда не бывает вполне контролируемым». Фундаментальные законы соединяли в себе два элемента, которые мы теперь в состоянии разделить. Один из них состоял в требовании подлинного диалога с природой, означающего, что человеческий разум должен строить математические зависимости, направляемые экспериментом. (С этой точки зрения, самая возможность универсальных законов природы не могла не вызывать удивление, что подтверждает скептический прием, оказанный в XVIII веке законам Ньютона.) Другой элемент – перспектива создания сверхнауки, которая должна заниматься изучением самих законов природы. Весьма парадоксально, что западная наука, видевшая свою высшую цель в том, чтобы прислушиваться к фактам (в отличие от спекулятивных притязаний метафизики), как нельзя лучше соответствует тому, что Ричард Тарнас с полным основанием назвал «глубочайшей страстью западного ума к объединению с самой основой своего бытия». Открытие симметричных во времени детерминистских законов природы отвечало этому пристрастию, но ценой отторжения этой основы от созидающей временной реальности. Ситуация изменилась: необратимость и вероятность стали объективными свойствами, отражающими тот факт, что физический мир не может быть сведен к отдельным траекториям (в ньютоновском описании) или волновым функциям (в шредингеровском). Новое представление об ансамблях не влечет за собой потери информации, напротив, оно позволяет более полно охватить свойства диссипативных хаотических систем. Устойчивые и обратимые во времени классические системы, как мы теперь понимаем, соответствуют предельным, исключительным случаям (в квантовом мире положение сложнее, так как нарушение симметрии во времени есть необходимое условие для наблюдения микрообъектов – для перехода от амплитуд вероятности к самим вероятностям). Типичны именно неустойчивые хаотические системы, описываемые неприводимыми вероятностными законами, – они соответствуют подавляющему большинству случаев, представляющих физический интерес. Причина успеха этого подхода кроется в обращении к новым математическим средствам. Хорошо известно, что задача, неразрешимая с помощью одного алгоритма, может стать разрешимой, если использовать другой. Например, вопрос о существовании корней алгебраического уравнения неразрешим в области вещественных чисел (оно может не иметь ни одного вещественного корня), но стоит перейти в область комплексных чисел, как ответ становится очень простым: каждое уравнение n‑степени имеет n корней. Поиск соотношения между проблемами и средствами, необходимыми для их решения, – процесс открытый, способный служить великолепной иллюстрацией творческого созидания, свободного и в то же время ограниченного решаемой задачей. Как ни удивительно, но теперь ученые в состоянии решить и некоторые, не поддававшиеся прежде конкретные проблемы. В классической динамике законы хаоса ассоциируются с интегрированием «неинтегрируемых» систем Пуанкаре, а предложенные методы дают более мощные алгоритмы. Также и в квантовой механике они позволяют устранить трудности, стоящие на пути решения задачи на собственные значения (реализации программы Гейзенберга). Даже такая простая проблема, как рассеяние частиц в потенциальном поле, приводит к неинтегрируемым системам Пуанкаре (интегрируемые системы Пуанкаре – это достаточно простые системы, в которых взаимодействие элементов можно математически исключить; в уравнениях, описывающих их движение, прошлое и будущее неразличимы. Неинтегрируемые – более сложные системы, в которых взаимодействие элементов становится принципиально важным – в них появляется стрела времени). Введение неприводимых вероятностных представлений потребовало рассмотрения так называемых «обобщенных пространств». Гильбертово пространство само уже есть обобщение конечномерных векторных пространств (его элементы – уже не векторы, а функции), но в нем мы можем использовать только достаточно «хорошие» функции. В обобщенных же пространствах можно оперировать также сингулярными, или обобщенными функциями (эти функции позволяют математически корректно описывать используемые в физике идеализированные представления. Например, равная единице плотность массы материальной точки, расположенной в начале координат или электрического заряда, выражается? – функцией Дирака). Все это аналогично переходу от плоской евклидовой геометрии к искривленной римановой. Другой существенный элемент теории – хронологическое, или временное, упорядочение. Гармонический осциллятор (классический или квантовый) обратим во времени. Но в неинтегрируемой системе возникает естественное упорядочение, задаваемое направленным течением самого процесса. Простейший пример – различие, возникающее в электродинамике между запаздывающими и опережающими потенциалами. Если устойчивые системы связаны с детерминистским, симметричным временем, то неустойчивые хаотические – с вероятностным, нарушающим равноправие прошлого и будущего. Ограниченность традиционного описания в терминах отдельных траекторий или волновых функций не должна удивлять. Когда мы толкуем об архитектуре, мы имеем в виду не кирпичи, а здание в целом. Нередко приходится слышать, что история в наши дни ускорила свой бег; и в этом случае сказанное относится не к изменению природы отдельных людей, а к изменению отношений между ними из‑за небывалого развития средств связи. Даже рождение новых идей любым человеком обусловлено тем, что он погружен в разделяемый многими мир значений, проблем и отношений. Другими словами, это есть свойство всей системы в целом. Ситуация, с которой мы сталкиваемся в физике, много проще. Однако и там нам надлежит отказаться от мнения, будто время есть параметр, описывающий движение отдельных элементов системы. Адекватное физическое описание хаотических процессов, которое включило бы в себя необратимость и вероятность, возможно только при их целостном рассмотрении на уровне ансамблей.
Объединяющая роль хаоса
Между фундаментальными законами физики и всеми остальными науками существовал разрыв. Мы глубоко убеждены в том, что предложенный подход дает более согласованное и единообразное описание природы, преобразующее взаимосвязи между науками. Теперь можно избежать взгляда, который, во имя сохранения основных уравнений, низводит время до иллюзии и сводит человеческий опыт к некоей субъективной реальности, лежащей вне природы. Хаос позволяет по‑новому сформулировать то, что нам надлежит познать. Устойчивые механические, а также конечные квантовые системы исторически послужили фундаментом для создания великих теоретических схем физики. Эти теории делали акцент на том, что сейчас представляется весьма частными случаями, и экстраполировали свои выводы далеко за пределы применимости каждого такого случая. Мы сталкиваемся с двумя совершенно различными проявлениями хаоса – динамическим (на микроуровне) и диссипативным (на макроуровне). Первый находится на самом нижнем уровне описания природы, он включает в себя нарушение симметрии во времени и имеет выход в макроскопические явления, направляемые вторым началом термодинамики. Среди них – процессы приближения систем к равновесию, в которых проявляет себя диссипативный хаос. Мы знаем, что вдали от положения равновесия возможны разные аттракторы. Одни из них соответствуют периодическим режимам, другие – хаотичным. Все эти диссипативные эффекты представляют собой макроскопические реализации хаотической динамики, описываемой нелинейными уравнениями. Только через исследование нелинейных систем мы можем постичь внутреннее единство в неисчерпаемом разнообразии природных процессов – от беспорядочных, например излучения нагретого тела, до высокоорганизованных, идущих в живых существах. «Хаос» и «материя» – понятия, тесно взаимосвязанные, поскольку динамический хаос лежит в основе всех наук, занимающихся изучением той или иной активности вещества, начиная с физической химии. Кроме того, хаос и материя вступают во взаимодействие еще и на космологическом уровне, так как самый процесс обретения материей физического бытия, согласно современным представлениям, связан с хаосом и неустойчивостью. Эйнштейновская космология стала венцом достижений классического подхода, но в «стандартной модели» материя уже изначально есть, она лишь эволюционирует в соответствии с фазами расширения Вселенной. Однако неустойчивость возникает, как только мы учитываем эффект рождения материи и пространства‑времени в состоянии сингулярности Большого взрыва. Предложенная модель не утверждает, что космологическая стрела времени рождается «из ничего» – она проистекает из неустойчивости квантового вакуума. Ведь направление времени, различие между прошлым и будущим никогда не были столь существенными, как при планковских значениях физических величин, то есть в тот момент, когда рождалась наша Вселенная. Можно ли пойти дальше? Если хаос – объединяющий элемент в необъятной области от классической механики до квантовой физики и космологии, то не может ли он послужить для построения Теории Всего Сущего (или сокращенно – ТВС)? Здесь выскажем некоторые предостережения. Прежде всего, подчеркнем, что неустойчивость связана с вполне определенной формой динамики. Классический хаос качественно отличен от квантового хаоса, и мы пока весьма далеки от единой теории, охватившей бы и квантовую механику, и общую теорию относительности. Кроме того, «классическая» ТВС, как писал Хокинг, претендует на то, чтобы постичь замыслы Бога, то есть достичь фундаментального уровня описания, исходя из которого все явления (по крайней мере, в принципе) можно было бы вывести детерминистским способом. Мы же говорим о совершенно иной форме унификации – о такой ТВС, которая включила бы в себя хаос на самом глубоком уровне физики и не приводила бы к редукционистскому, вневременному описанию. Более высокие уровни допускались бы фундаментальным уровнем, но не следовали бы из него. Объединяющий элемент, вводимый хаосом, соответствует концепции открытого эволюционирующего мира, в котором, по словам Поля Валери, «время есть конструкция». Как это часто бывает, новые перспективы приводят к переоценке прошлого. Карл Рубино заметил, что Аристотель отверг вечный и неизменный мир, описываемый Платоном. В своей «Этике» Аристотель доказывал, что акты нашего выбора не определяются нашим характером – наоборот, последовательные выборы делают нас теми, кто мы есть. Поэтому этика – не область дедуктивного знания, а практическая мудрость, искусство делать надлежащий выбор в условиях неопределенного будущего. Мы должны удержаться от платоновского искушения отождествлять этику с поиском незыблемых истин. Как учил Аристотель, «при изучении любого предмета не следует стремиться к большей точности, чем допускает природа предмета». На протяжении веков такая максима рассматривалась как отрицательное суждение, как призыв к отказу от чего‑то. Теперь же мы в состоянии увидеть здесь и позитивный смысл. Возьмем, к примеру, описанную трансформацию концепции хаоса. Покуда мы требовали, чтобы все динамические системы подчинялись одним и тем же законам, хаос был препятствием на пути познания. В замкнутом мире классической рациональности раскрытие законов природы могло приводить к интеллектуальному снобизму и высокомерию. В открытом мире, который мы сейчас начинаем постигать, теоретическое знание и практическая мудрость дополняют друг друга. В конце жизни Эйнштейну преподнесли сборник статей о нем, среди которых был очерк выдающегося австрийского математика Курта Геделя. Этот ученый всерьез воспринял слова Эйнштейна о том, что необратимость времени – всего лишь иллюзия, и представил космологическую модель, в которой человек мог отправиться назад в свое прошлое; он даже подсчитал количество топлива, необходимое для такого путешествия. Но у Эйнштейна идеи Геделя не вызвали особого энтузиазма. В своем ответе Геделю он заметил, что не может поверить, будто кому‑нибудь удастся хотя бы «телеграфировать в свое прошлое», и даже добавил, что невозможность этого должна заставить физиков обратить внимание на необратимость времени, так как время и реальность нерасторжимо связаны между собой. Сколь бы сильным ни было искушение вечностью, путешествие назад во времени означало бы отрицание реальности мира – для Эйнштейна оказались неприемлемыми радикальные выводы из его же собственных взглядов. Аналогичную реакцию мы находим у известного писателя Хорхе Луиса Борхеса. В рассказе «Новое опровержение времени» он описывает теории, объявляющие время иллюзией, и в заключение пишет: «И все же, и все же… Отрицание хронологической последовательности, отрицание себя, отрицание астрономической Вселенной – все это акты отчаяния и тайного сожаления… Время – та субстанция, из которой я состою. Время – это река, уносящая меня, но я сам река; это тигр, пожирающий меня, но я сам тигр; это огонь, поглощающий меня, но я сам огонь. Мир, к сожалению, реален; я, к сожалению, Борхес». Отрицание времени было искушением и для Эйнштейна, ученого, и для Борхеса, поэта, – оно отвечало их глубокой экзистенциальной потребности. В письме к Максу Борну (1924 года) Эйнштейн заметил, что если бы ему пришлось отказаться от строгой причинности, то он предпочел бы стать «сапожником или крупье в игорном доме, нежели физиком». Наука, для того чтобы она имела в глазах Эйнштейна какую‑то ценность, должна удовлетворять его потребности в избавлении от трагедии человеческого существования. «И все же, и все же…» Столкнувшись с доведенным до предела следствием из его собственных идей, ученый отступил. Французский философ Эмиль Мейерсон усматривал в попытках свести природу к некоему тождеству основную движущую силу западной науки, причем парадоксальную, так как, подчеркивал философ, «стремление к тождеству уничтожает сам объект познания». Что останется от нашего отношения к миру, если он сведется к некоторой геометрической схеме? В этом – наиболее полное выражение парадокса времени, с которым столкнулся Эйнштейн, Гедель видел в способности двигаться вспять во времени победу человеческого разума, полный его контроль над нашим существованием. Но эта способность наглядно выявила все безумие такой концепции природы и разума, при которой снимаются все ограничения, направляющие созидание и творчество, ибо без них не было бы той реальности, которая бросает вызов нашим надеждам и планам. Но и то, что полностью случайно, тоже лишено реальности. Мы можем понять отказ Эйнштейна принять случай в качестве универсального ответа на наши вопросы. Мы должны отыскать узкий проход, затерявшийся где‑то между двумя концепциями, каждая из которых приводит к отчуждению: между миром, управляемым законами, не оставляющими места для новизны и созидания, и миром, символизируемым Богом, играющим в кости, – абсурдным, акаузальным, в котором нечего понимать. Наши усилия могут служить иллюстрацией созидательной роли человека в науке, где, как ни странно, роль личностного начала часто недооценивают. Всякий знает, что если бы Шекспир, Бетховен или Ван Гог умерли вскоре после своего рождения, то никто другой не смог бы повторить их свершений. Верно ли аналогичное утверждение по отношению к ученым? Разве кто‑нибудь еще не смог бы открыть классические законы движения, не будь Ньютона? Разве формулировка второго начала термодинамики нерасторжимо связана с личностью Клаузиуса? Конечно, в противопоставлении литературы, музыки, живописи науке есть свой резон: наука – дело коллективное, решение научной проблемы должно удовлетворять определенным точным критериям. Однако эти свойства науки отнюдь не уменьшают ее творческого характера. Осознание парадокса времени само по себе было выдающимся интеллектуальным достижением. Разве могла бы наука, стесненная рамками утилитаризма, даже мечтать об отрицании стрелы времени, если все природные явления свидетельствуют об обратном? Свободный полет фантазии привел к построению величественного здания классической физики, увенчанного затем двумя достижениями XX века – квантовой механикой и общей теорией относительности. В этом и состоит загадочная красота физики. Но научное творчество – не только смелый полет мысли. Так, решение парадокса времени не могло быть только результатом фантазии, чьего‑то убеждения или обращения к здравому смыслу. Он был решен с помощью теоремы Пуанкаре, в ходе изучения динамической неустойчивости, как следствие отказа от представлений об отдельных траекториях. Пригожин превратил этот недостаток в достоинство, хаос – в новое орудие исследования процессов, до сих пор остававшихся вне досягаемости для строгой науки. В этом – суть диалога с природой, в котором мы преобразуем то, что, на первый взгляд, кажется препятствием, в новую точку зрения, меняющую смысл отношений между познающим и познаваемым. Описание природы, возникающее буквально на наших глазах, лежит между двумя противоположными картинами – детерминистским миром абстрактных схем и произвольным событийным миром. В этом срединном описании физические законы приводят к новой форме познаваемости, выражаемой неприводимыми вероятностными представлениями. Будучи связанными с неустойчивостью (микро – или макроскопической), законы природы оперируют с возможностью событий, но не делают отдельные события выводимыми, заранее предсказуемыми. Такое разграничение между тем, что выводимо и управляемо, и тем, что непредсказуемо и неконтролируемо, возможно, удовлетворило бы и Эйнштейна. Прокладывая узкую тропинку между безжизненными законами и происходящими событиями, мы обнаруживаем, что значительная часть окружающего нас мира до сих пор «ускользала от расставленных наукой сетей» (выражение Уайтхеда). Теперь открылись новые горизонты и, конечно, встали новые нерешенные вопросы, где наш разум опять подстерегают опасности.
Глава 4
|
|||||||||
Последнее изменение этой страницы: 2016-04-19; просмотров: 416; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.22.181.178 (0.014 с.) |