Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Сочетанием без повторений из n элементов по k называется любое k-элементное подмножество заданного n-элементного множества.Содержание книги
Поиск на нашем сайте
Например, из множества {a, b, c, d} можно составить следующие сочетания без повторений из трех элементов: {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}. Количество сочетаний без повторений из n элементов по k элементов обозначается символом (читается: «число сочетаний из п по k» или «це из п по k», С — первая буква французского слова combinaison — сочетание). Как видим, Выясним, сколько всего можно составить сочетаний без повторений из n элементов по k. Для этого используем известные нам формулы числа размещений и перестановок. Составление размещения без повторений из n элементов по k проведем в два этапа. Сначала выберем k разных элементов из заданного n-элементного множества, не учитывая порядок выбора этих элементов (то есть выберем kэлементное подмножество из n-элементного множества — сочетание без повторений из n-элементов по k). По нашему обозначению это можно сделать способами. После этого полученное множество из k разных элементов упорядочим. Его можно упорядочить способами. Получим размещения без повторений из n элементов по k. Следовательно, количество размещений без повторений из n элементов по k в k! раз больше числа сочетаний без повторений из n элементов по k, то есть Отсюда Учитывая, что по формуле (2) , получаем: (3) Например, что совпадает со значением, полученным выше. Используя формулу (3), можно легко обосновать свойство 1 числа сочетаний без повторений, приведенное в табл. 28. 1) Поскольку то (4) Для того чтобы формулу (4) можно было использовать и при k = n, договорились считать, что Тогда Заметим, что формулу (4) можно получить без вычислений с помощью достаточно простых комбинаторных рассуждений. Когда мы выбираем k предметов из n, то n – k предметов мы оставляем. Если же, напротив, выбранные предметы оставим, а другие n – k -выберем, то получим способ выбора n – k предметов из n. Мы получили взаимно-однозначное соответствие способов выбора k и n – k предметов из n. Значит, количество одних и других способов одинаково. Но количество одних — , а других , поэтому . Если в формуле (3) сократить числитель и знаменатель на (n – k)!, то получим формулу, по которой удобно вычислять при малых значениях k: (5) Например, 2. Вычисление числа сочетаний без повторений с помощью треугольника Паскаля: Для вычисления числа сочетаний без повторений можно применять формулу (3): , а можно последовательно вычислять соответствующие значения, пользуясь следующим свойством: (6) Для обоснования равенства (6) можно записать сумму , используя формулу (3), и после приведения полученных дробей к общему знаменателю получить формулу для правой части равенства (6) (проделайте это самостоятельно). Также формулу (6) можно получить без вычислений с помощью комбинаторных рассуждений. - это количество способов выбрать k +1 предмет из n + 1. Подсчитаем это количество, зафиксировав один предмет (назовем его «фиксированным»). Если мы не берем фиксированный предмет, то нам нужно выбрать k +1 предмет из n тех, что остались, а если мы его берем, то нужно выбрать из n тех, что остались, еще k предметов. Первое можно сделать способами, второе способами. Всего как раз способов, следовательно, Это равенство позволяет последовательно вычислять значения с помощью специальной таблицы, которая называется треугольником Паскаля. Если считать, что , то он будет иметь вид, представленный в табл. 29. Каждая строка этой таблицы начинается с единицы и заканчивается единицей Если какая-либо строка уже заполнена, например третья, то в четвертой строке надо записать на первом месте единицу. На втором месте запишем число, равное сумме двух чисел третьей строки, стоящих над ним левее и правее (поскольку по формуле (6) На третьем месте запишем число, равное сумме двух следующих чисел третьей строки, стоящих над ним левее и правее , и т. д. (а на последнем месте снова запишем единицу). Примеры решения задач: Обратим внимание, что, как и раньше, для выбора формулы при решении простейших комбинаторных задач достаточно ответить на вопросы: 1. Учитывается ли порядок следования элементов в соединении? 2. Все ли заданные элементы входят в полученное соединение? Чтобы выяснить, является ли заданное соединение сочетанием, достаточно ответить только на первый вопрос (см. схему в табл. 28). Если порядок следования элементов не учитывается, то по определению это сочетание из n элементов по k элементов. Пример: Из 12 членов туристической группы надо выбрать трех дежурных. Сколькими способами можно сделать этот выбор? Решение: Количество способов выбрать из 12 туристов трех дежурных равно количеству сочетаний из 12 элементов по 3 (без повторений), то есть Комментарий: Для выбора соответствующей формулы выясняем ответы на вопросы, приведенные выше. Поскольку порядок следования элементов не учитывается (для дежурных неважно, в каком порядке их выберут), то соответствующее соединение является сочетанием из 12 элементов по 3 (без повторений). Для вычисления можно использовать формулы (3) или (5), в данном случае применяем формулу (3): Пример: Из вазы с фруктами, в которой лежат 10 разных яблок и 5 разных груш, требуется выбрать 2 яблока и 3 груши. Сколькими способами можно сделать такой выбор? Решение: Выбрать 2 яблока из 10 можно способами. При каждом выборе яблок груши можно выбрать способами. Тогда по правилу произведения выбор требуемых фруктов можно выполнить способами. Получаем Комментарий: Сначала отдельно выберем 2 яблока из 10 и 3 груши из 5. Поскольку при выборе яблок или груш порядок следования элементов не учитывается, то соответствующие соединения — сочетания без повторений. Учитывая, что требуется выбрать 2 яблока и 3 груши, используем правило произведения и перемножим полученные возможности выбора яблок и груш Бином Ньютона: Поскольку (при x ≠ 0 и a ≠ 0), то формулу бинома Ньютона можно записать еще и так: Общий член разложения степени бинома имеет вид (где ). Коэффициенты называют биномиальными коэффициентaми. Свойства биномиальных коэффициентов: 1. Число биномиальных коэффициентов (а следовательно, и число слагаемых) в разложении n-й степени бинома равно n + 1. 2. Коэффициенты членов, равноудаленных от начала и конца разложения, равны между собой (поскольку ) 3. Сумма всех биномиальных коэффициентов равна 4. Сумма биномиальных коэффициентов, стоящих на четных местах, равна сумме биномиальных коэффициентов, стоящих на нечетных местах. 5. Для вычисления биномиальных коэффициентов можно воспользоваться треугольником Паскаля, в котором вычисления коэффициентов основываются на формуле Объяснение и обоснование: Бином Ньютона: Двучлен вида a + x также называют биномом. Из курса алгебры известно, что: Можно заметить, что коэффициенты разложения степени бинома при n = 1, 2, 3 совпадают с числами в соответствующей строке треугольника Паскаля. Оказывается, что это свойство выполняется для любого натурального n, то есть справедлива формула (7) Формулу (7) называют биномом Ньютона. Правая часть этого равенства называется разложением степени бинома , а числа (при k = 0, 1, 2,..., n) называют биномиальными коэффициентами. Общий член разложения степени бинома имеет вид Обосновать формулу (7) можно, например, с помощью метода математической индукции. (Проведите такое обоснование самостоятельно.) Приведем также комбинаторные рассуждения для обоснования формулы бинома Ньютона. По определению степени с натуральным показателем (всего n скобок). Раскрывая скобки, получаем в каждом слагаемом произведение n букв, каждая из которых - а или х. Если, например, в каком-либо слагаемом количество букв x равно k, то количество букв а в нем — n – k, то есть каждое слагаемое имеет вид при некотором k от 0 до n. Покажем, что для каждого такого k число слагаемых an равно , откуда после приведения подобных членов и получаем формулу бинома. Произведение получаем, взяв букву x из k скобок и букву а из n – k тех скобок, которые остались. Разные такие слагаемые получим путем разного выбора первых k скобок, а k скобок из n можно выбрать именно способами. Следовательно, общий член разложения бинома действительно имеет вид где k = 0, 1, 2,..., n. Именно из-за бинома Ньютона числа часто называют биномиальными коэффициентами. Записывая степень двучлена по формуле бинома Ньютона для небольших значений n, биномиальные коэффициенты можно вычислять с помощью треугольника Паскаля (см. табл. 30). Например, Так как , формулу бинома Ньютона можно записать в виде: (8) Если в формуле бинома Ньютона (8) заменить x на (–x), то получим формулу возведения в степень разности a – x: Например, (знаки членов разложения чередуются!). Свойства биномиальных коэффициентов: 1. Число биномиальных коэффициентов (а следовательно, и число слагаемых) в разложении n-й степени бинома равно n + 1, поскольку разложение содержит все степени x от 0 до n (и других слагаемых не содержит). 2. Коэффициенты членов, равноудаленных от начала и конца разложения, равны между собой, поскольку 3. Сумма всех биномиальных коэффициентов равна Для обоснования полагаем в равенстве (7) значения a = x = 1 и получаем: Например, 4. Сумма биномиальных коэффициентов, стоящих на четных местах, равна сумме биномиальных коэффициентов, стоящих на нечетных местах. Для обоснования возьмем в равенстве (7) значения a = 1, x = –1: Тогда Примеры решения задач: Пример: По формуле бинома Ньютона найдите разложение степени . Комментарий: Для нахождения коэффициентов разложения можно использовать треугольник Паскаля (табл. 30) или вычислять их по общей формуле. По треугольнику Паскаля коэффициенты равны: 1, 6, 15, 20, 15, 6, 1. Учитывая, что при возведении разности в степень знаки членов разложения чередуются, получаем: Для упрощения записи ответа можно избавиться от иррациональности в знаменателях полученных выражений (см. решение) или сначала учесть, что ОДЗ данного выражения: x > 0. Тогда то есть данное выражение можно записать так: и возвести в степень последнее выражение. Решение: Пример: В разложении степени найдите член, содержащий Решение: ОДЗ: b > 0. Тогда . Общий член разложения: По условию член разложения должен содержать , следовательно, Отсюда k = 6. Тогда член разложения, содержащий , равен Комментарий: На ОДЗ (b > 0) каждое слагаемое в данном двучлене можно записать как степень с дробным показателем. Это позволит проще записать общий член разложения степени (где k = 0, 1, 2,..., n), выяснить, какой из членов разложения содержит и записать его. Чтобы упростить запись общего члена разложения, запишем: Всё о комбинаторике Пусть имеется несколько множеств элементов: Вопрос: сколькими способами можно составить новое множество взяв из каждого исходного множества по одному элементу? Ответ на этот вопрос дают следующие рассуждения. Элемент из первого множества можно выбрать способами, элемент из второго – s способами, элемент с можно выбрать способами и т. д. Пару элементов можно составить • s способами. Это следует из табл. 1.1, в которой перечислены все способы такого выбора. Способы выбора трех элементов аbc перечислены в табл. 1.2. В этой таблице строк и • s столбцов. Поэтому искомое число способов выбора трех элементов аbc равно • s • . Продолжая рассуждать подобным образом, получим следующее утверждение. Основной комбинаторный принцип. Если некоторый первый выбор можно сделать способами, для каждого первого выбора некоторый второй можно сделать s способами, для каждой пары первых двух – третий выбор можно сделать способами и т.д., то число способов для последовательности таких выборов равно • s • .... Комбинаторные формулы в прикладных задачах теории вероятностей обычно связывают с выбором элементов («выборкой объема ») из совокупности, состоящей из элементов (элементов «генеральной совокупности»). Различают два способа выбора:
При повторном выборе каждый по порядку элемент может быть выбран способами. Согласно комбинаторному принципу, такую выборку можно сделать способами. Например, повторную выборку объема 2 из трех элементов можно сделать 32 =9 способами: В случае бесповторной выборки первый элемент можно выбрать способами, для второго остается возможность выбора, третий элемент можно выбрать способами и т.д. Элемент выборки с номером можно выбрать способом. Согласно комбинаторному принципу, общее число бесповторных выборок объема равно Число называют числом размещений из элементов по . Например, существует размещений из трех элементов по два: Отметим, что и в первом случае и во втором выборки отличаются либо составом элементов, либо порядком выбора элементов. Выделим особо случай, когда один за другим выбраны все элементов. В этом случае выборки имеют один и тот же состав (все элементов) и отличаются только порядком выбора элементов. Поэтому число называют числом перестановок из элементов. Например, пять человек могут встать в очередь способами. Три элемента можно переставить способами: Подсчитаем количество бесповторных выборок объема , которые отличаются друг от друга только составом элементов. Пусть X — число таких выборок. Для каждого набора из элементов можно выбрать порядок их расположения способами. Тогда равно числу способов выбрать различных элементов и выбрать порядок их расположения, т.е. равно числу размещений из элементов по : Это число называют числом сочетаний из элементов по и обозначают через Если в формуле (1.2) умножить числитель и знаменатель на , то Например, сочетаний из четырех элементов по два существует . Это Так как из элементов выбрать элементов можно единственным образом, то откуда следует, что Величины называют биномиальными коэффициентами. Название связано с формулой бинома Ньютона Из формулы (1.3) следует, что Биномиальные коэффициенты образуют так называемый треугольник Паскаля, который имеет вид: В -й строке треугольника Паскаля располагаются коэффициенты, соответствующие представлению по формуле (1.3). Треугольником удобно пользоваться для нахождения значений . Это значение находится на пересечении -й строки и -го наклонного ряда. Например, Биномиальные коэффициенты обладают свойством симметрии: Это наглядно демонстрирует треугольник Паскаля. Равенство (1.4) подтверждает тот очевидный факт, что выбор элементов из n равносилен выбору тех – элементов из , которые следует удалить, чтобы остались элементов. При повторном выборе из элементов число выборок объема , которые отличаются только составом равно Еще раз подчеркнем, что речь идет о выборках, которые отличаются хотя бы одним элементом, а порядок выбора этих элементов во внимание не принимается. Число таких выборок можно подсчитать следующим образом. Между элементами поставим разграничительные знаки, например, нули: Таких знаков (нулей) понадобится . На месте каждого элемента поставим столько единиц, сколько раз предполагается выбрать этот элемент. Например, комбинация означает, что элемент выбран четыре раза, элемент выбран один раз, элемент не выбран,..., элемент выбран два раза. Заметим, что в такой записи число единиц равно объему выборки . Для перебора всех возможных комбинаций нужно из мест выбрать место и поставить на них нули, а на остальных местах разместить единицы. Это можно сделать способами. Совокупность из элементов разделить на групп по элементов соответственно можно способами. Порядок элементов внутри каждой из этих групп не имеет значения. Пусть – множества, число элементов в каждом из которых равно соответственно Составить множество B из элементов множества А1, элементов множества А2, …, элементов множества Аk, можно, согласно основному комбинаторному принципу, способами. Для безошибочного выбора комбинаторной формулы достаточно последовательно ответить на вопросы в следующей схеме: Например, число словарей, необходимых для непосредственного перевода с одного на другой, для пяти языков определяется из следующих рассуждений. Для составления словаря выбираем из пяти языков ( = 5) любые два ( =2). Выбор бесповторный, причем при выборе важен и состав выбора и порядок выбора. Поэтому искомое число словарей равно
|
||||
Последнее изменение этой страницы: 2022-01-22; просмотров: 189; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.176.213 (0.01 с.) |