Перестановкой из n элементов называется любое упорядоченное множество из n данных элементов. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Перестановкой из n элементов называется любое упорядоченное множество из n данных элементов.



Перестановкой из n элементов называется любое упорядоченное множество из n данных элементов.

Иными словами, это такое множество, для которого указано, какой элемент находится на первом месте, какой — на втором,..., какой — на n-м.

Формула числа перестановок

Пример:

Количество различных шестизначных чисел, которые можно составить из цифр 1, 2, 3, 4, 5, 6, не повторяя эти цифры в одном числе, равно

Размещения:

Размещением из n элементов по k называется любое упорядоченное множество из k элементов, состоящее из элементов данного n-элементного множества.

Формулы для нахождения количества соединений с повторениями обязательны только для классов физико-математического профиля.

Формула числа размещений

Пример:

Количество различных трехзначных чисел, которые можно составить из цифр 1, 2, 3, 4, 5, 6, если цифры не могут повторяться, равно

Сочетания:

Всё о комбинаторике

Пусть имеется несколько множеств элементов:

Вопрос: сколькими способами можно составить новое множество взяв из каждого исходного множества по одному элементу? Ответ на этот вопрос дают следующие рассуждения.

Элемент из первого множества можно выбрать способами, элемент из второго – s способами, элемент с можно выбрать способами и т. д. Пару элементов можно составить s способами. Это следует из табл. 1.1, в которой перечислены все способы такого выбора.

Способы выбора трех элементов аbc перечислены в табл. 1.2.

В этой таблице строк и s столбцов. Поэтому искомое число способов выбора трех элементов аbc равно s. Продолжая рассуждать подобным образом, получим следующее утверждение.

Основной комбинаторный принцип. Если некоторый первый выбор можно сделать способами, для каждого первого выбора некоторый второй можно сделать s способами, для каждой пары первых двух – третий выбор можно сделать способами и т.д., то число способов для последовательности таких выборов равно s ....

Комбинаторные формулы в прикладных задачах теории вероятностей обычно связывают с выбором элементов («выборкой объема ») из совокупности, состоящей из элементов (элементов «генеральной совокупности»). Различают два способа выбора:

  • а) повторный выбор, при котором выбранный элемент возвращается в генеральную совокупность и может быть выбран вновь;
  • б) бесповторный выбор, при котором выбранный элемент в совокупность не возвращается и выборка не содержит повторяющихся элементов.

При повторном выборе каждый по порядку элемент может быть выбран способами. Согласно комбинаторному принципу, такую выборку можно сделать способами. Например, повторную выборку объема 2 из трех элементов можно сделать 32 =9 способами:

В случае бесповторной выборки первый элемент можно выбрать способами, для второго остается возможность выбора, третий элемент можно выбрать способами и т.д. Элемент выборки с номером можно выбрать способом. Согласно комбинаторному принципу, общее число бесповторных выборок объема равно

Число называют числом размещений из элементов по .

Например, существует размещений из трех элементов по два: Отметим, что и в первом случае и во втором выборки отличаются либо составом элементов, либо порядком выбора элементов.

Выделим особо случай, когда один за другим выбраны все элементов. В этом случае выборки имеют один и тот же состав (все элементов) и отличаются только порядком выбора элементов. Поэтому число

называют числом перестановок из элементов.

Например, пять человек могут встать в очередь способами. Три элемента можно переставить способами:

Подсчитаем количество бесповторных выборок объема , которые отличаются друг от друга только составом элементов. Пусть X — число таких выборок. Для каждого набора из элементов можно выбрать порядок их расположения способами. Тогда равно числу способов выбрать различных элементов и выбрать порядок их расположения, т.е. равно числу размещений из элементов по :

Это число называют числом сочетаний из элементов по и обозначают через Если в формуле (1.2) умножить числитель и знаменатель на , то

Например, сочетаний из четырех элементов по два существует . Это

Так как из элементов выбрать элементов можно единственным образом, то откуда следует, что

Величины называют биномиальными коэффициентами. Название связано с формулой бинома Ньютона

Из формулы (1.3) следует, что

Биномиальные коэффициенты образуют так называемый треугольник Паскаля, который имеет вид:

В -й строке треугольника Паскаля располагаются коэффициенты, соответствующие представлению по формуле (1.3). Треугольником удобно пользоваться для нахождения значений . Это значение находится на пересечении -й строки и -го наклонного ряда. Например,

Биномиальные коэффициенты обладают свойством симметрии:

Это наглядно демонстрирует треугольник Паскаля. Равенство (1.4) подтверждает тот очевидный факт, что выбор элементов из n равносилен выбору тех элементов из , которые следует удалить, чтобы остались элементов.

При повторном выборе из элементов число выборок объема , которые отличаются только составом равно Еще раз подчеркнем, что речь идет о выборках, которые отличаются хотя бы одним элементом, а порядок выбора этих элементов во внимание не принимается. Число таких выборок можно подсчитать следующим образом. Между элементами поставим разграничительные знаки, например, нули: Таких знаков (нулей) понадобится . На месте каждого элемента поставим столько единиц, сколько раз предполагается выбрать этот элемент. Например, комбинация означает, что элемент выбран четыре раза, элемент выбран один раз, элемент не выбран,..., элемент выбран два раза. Заметим, что в такой записи число единиц равно объему выборки . Для перебора всех возможных комбинаций нужно из мест выбрать место и поставить на них нули, а на остальных местах разместить единицы. Это можно сделать способами.

Совокупность из элементов разделить на групп по элементов соответственно можно способами. Порядок элементов внутри каждой из этих групп не имеет значения.

Пусть – множества, число элементов в каждом из которых равно соответственно Составить множество B из элементов множества А1, элементов множества А2, …, элементов множества Аk, можно, согласно основному комбинаторному принципу, способами.

Для безошибочного выбора комбинаторной формулы достаточно последовательно ответить на вопросы в следующей схеме:

Например, число словарей, необходимых для непосредственного перевода с одного на другой, для пяти языков определяется из следующих рассуждений. Для составления словаря выбираем из пяти языков ( = 5) любые два ( =2). Выбор бесповторный, причем при выборе важен и состав выбора и порядок выбора. Поэтому искомое число словарей равно

Пример №1

Сколькими способами можно выбрать путь из начала координат 0(0,0) в точку В(6,4), если каждый шаг равен единице, но его можно совершать только вправо или вверх? Сколько таких путей проходит через точку А(2,3)?

Решение. Весь путь занимает 10 шагов (четыре вверх и шесть вправо). Для планирования пути следует решить, какие именно по счету четыре шага следует сделать вверх, а остальные шесть — вправо. Выбор бесповторный и нас интересует только состав выбора. Поэтому в описанных условиях всего путей из точки О в точку В будет

Рассуждая подобным образом легко видеть, что путей из точки О в точку А существует а путь из точки А в точку В можно выбрать способами. По комбинаторному принципу всего путей через точку А существует 10 • 5 = 50.

Ответ. 210; 50.

Пример №2

Сколькими способами можно выбрать путь из начала координат 0(0,0) в точку если каждый шаг равен 1, но его можно совершать только вправо или вверх? Сколько таких путей проходит через точку (См. пример 1.1 и исходные данные.)

Исходные данные к задаче 1.1.

Пример №3

В городе с идеальной прямоугольной планировкой (сеть улиц в этом городе изображена на рис. 1.1) из пункта А выходят человек. Половина из них идет по направлению половина — по направлению Дойдя до первого перекрестка, каждая группа разделяется так, что половина ее идет по направлению половина — по направлению Такое же разделение происходит на каждом перекрестке. Требуется перечислить перекрестки, на которых окажутся люди после прохождения N улиц (отрезков на рис. 1.1), и сколько людей окажется на каждом из этих перекрестков.

Решение. Каждый человек пройдет N улиц и окажется на одном из перекрестков Координаты перекрестков указаны в предположении, что точка А служит началом координат.

На каждом перекрестке для каждого человека производится выбор из двух возможностей: идти в направлении или в направлении Поэтому всего возможных путей будет . Из этого следует, что каждый путь пройдет только один человек.

В пункте окажется столько человек, сколько различных путей ведет в этот пункт из точки А. Чтобы попасть в пункт необходимо из N улиц выбрать бесповторным способом к улиц в направлении . Это можно сделать способами.

Ответ.

Пример №4

Сколькими способами можно одинаковых предметов распределить между лицами так, чтобы каждый получил не менее одного предмета?

Решение. Поставим эти предметы в ряд. Между ними будет промежуток. В любые из этих промежутков поставим разделяющие перегородки. Тогда все предметы разделятся на непустых частей. Первую часть передадим первому лицу, вторую — второму и т.д. Выбрать же промежуток из промежутка можно способами. Заметим, что вообще предметов распределить между лицами можно способами.

Ответ.

Пример 1.4.

Сколькими способами можно распределить 6 яблок, 8 груш и 10 слив между тремя детьми? Сколькими способами это можно сделать так, чтобы каждый ребенок получил по меньшей мере одно яблоко, одну сливу и одну грушу?

Решение. Яблоки в соответствии с формулой (1.5) можно распределить способами, груши — , а сливы способами. По комбинаторному принципу всего способов Если необходимо, чтобы каждый ребенок получил по меньшей мере одно яблоко, одну грушу и одну сливу, то в соответствии с формулой предыдущего примера имеем способов.

Ответ. 83160; 7560.

Пример №5

Сколько цифр в первой тысяче не содержат в своей записи цифры 5?

Решение. Для записи любой из цифр 000, 001, 002,..., 999 необходимо трижды выбрать повторным способом одну из десяти цифр, поэтому и получается всего чисел. Если цифру 5 исключить, то выбор можно производить только из девяти цифр: 0, 1,2, 3, 4, 6, 7, 8, 9. Поэтому всего получится чисел в первой тысяче, в записи которых нет цифры 5.

Ответ. 729.

Пример №6

Сколько шестизначных чисел содержат в записи ровно три различных цифры?

Решение. Заметим, что всего шестизначных чисел имеется , так как первая цифра может быть любой (исключая нуль), а остальные пять могут быть выбраны способами.

Выбрать три ненулевых цифры можно способами. Из выбранных трех цифр можно составить шестизначных чисел, из двух — , а из одной — шестизначное число. По формуле (1.7) получаем, что существует шестизначных чисел, в записи которых есть только три заданные цифры. Поэтому общее число шестизначных чисел, в записи которых имеются три отличные от нуля цифры, равно

Учтем теперь возможность использования нуля. К нулю нужно добавить две цифры, что можно сделать способами. Если, например, были выбраны цифры 0, 2, 5, то первой цифрой должна быть 2 или 5. К этой первой цифре в соответствии с формулой (1.7) можно добавить комбинаций остальных пяти цифр. Тогда всего шестизначных чисел, состоящих из 0, 2, 5 будет Всего же шестизначных чисел, записанных тремя цифрами, среди которых встречается нуль, ровно Всего чисел, удовлетворяющих условиям задачи, имеется

Ответ. 58320.

Пример №7

В саду есть цветы десяти наименований (розы, флоксы, ромашки и т. д.).

а) Сколькими способами можно составить букет из пяти цветков (не принимая во внимание совместимость растений и художественные соображения)?

б) Сколькими способами можно составить букет из пяти различных цветков?

в) Сколькими способами можно составить букет из пяти цветков так, чтобы в букете непременно было хотя бы по одному цветку двух определенных наименований

Решение. а) Если запрета на повторение цветков нет, то мы имеем дело с повторным выбором и нас интересует только состав. Поэтому по формуле (1.5) получаем способа.

б) Если цветы должны быть разными, то способ выбора бесповторный и букет можно составить способами.

в) Отберем по одному цветку каждого из двух названных наименований. Три остальных цветка можно выбрать из 10 возможных способами.

Ответ. а) 2002; б) 504; в) 220.

Пример №8

Имеется яблок, груш и персиков. Сколькими способами можно их разложить по двум корзинам? Сколькими способами можно это сделать, если в каждой корзине должно быть хотя бы по одному фрукту всех названных видов (полагаем, что фруктов каждого наименования два или больше)?

Решение. Ясно, что яблоки можно разложить способом (в первую корзину можно не положить яблок совсем, положить одно яблоко, два яблока, …, все яблоки). Те же рассуждения в отношении груш и персиков дают соответственно комбинаций. По комбинаторному принципу всего будет способов.

При ответе на второй вопрос учтем, что следует по одному яблоку сразу положить в каждую из корзин, а остальные яблока раскладывать произвольным образом (в первую корзину либо не добавляем яблок, либо добавляем одно, либо –– два, …, либо – все яблока). Все это можно сделать способами. Те же рассуждения насчет других фруктов и комбинаторный принцип дают следующий результат:

Ответ.

Пример №9

Требуется найти число натуральных делителей натурального числа .

Решение. Разложим на простые множители:

где – различные простые числа. (Например, )

Заметим, что при разделении числа на любые два множителя и простые сомножители распределятся между и . Если сомножитель, в число входит то разложение (1.8) примет вид:

Так что разложение на два сомножителя сводится к разделению каждого из чисел на две части, а это можно сделать способами.

Ответ. .

Пример №10

Сколькими способами легкоатлет, собираясь на тренировку, может выбрать себе пару спортивной обуви, имея 5 пар кроссовок и 2 нары кед?

Очевидно, что выбрать одну из имеющихся пар обуви, кроссовки или кеды, можно 5 + 2 = 7 способами.

Обобщая, приходим к комбинаторному правилу сложения:

  • если некоторый элемент можно выбрать способами, а элемент (независимо от выбора элемента ) — способами, то выбрать или можно способами.

Это правило справедливо также для трех и более элементов.

Пример №11

В меню школьной столовой предлагается на выбор 4 вида пирожков и 3 вида сока. Сколько разных вариантов выбора завтрака, состоящего из одного пирожка и одного стакана сока, имеется у учащегося этой школы?

Пирожок можно выбрать 4 способами и к каждому пирожку выбрать сок 3 способами (рис. 76). Следовательно, учащийся имеет вариантов выбора завтрака.

Обобщая, приходим к комбинаторному правилу умножения:

  • если некоторый элемент можно выбрать , способами и после каждого такого выбора (независимо от выбора элемента ) другой элемент можно выбрать способами, то пару объектов и можно выбрать способами.

Это правило справедливо также для трех и более элементов.

Пример №12

Сколько трехзначных чисел можно составить из цифр 1, 2, 3, 4, если в числе: 1) цифры не повторяются; 2) цифры могут повторяться?

Решение:

1) Первую цифру можем выбрать 4 способами (рис.77). Так как после выбора первой цифры их останется три (ведь цифры в нашем случае повторяться не могут), то вторую цифру можем выбрать 3 способами.И наконец, третью цифру можем выбрать из оставшихся двух - то есть 2 способами. Следовательно, количество искомых трехзначных у чисел будет равно .

2) Применим комбинаторное правило умножения. Так как цифры в числе могут повторяться, то каждую из цифр искомого числа можно выбрать 4 способами (рис. 78), и тогда таких чисел будет .

Ответ. 1) 24 числа; 2) 64 числа.

Отметим, что решить подобные задачи без применения комбинаторного правила умножения можно только путем перебора всех возможных вариантов чисел, удовлетворяющих условию задачи. Но такой способ решения является слишком долгим и громоздким.

Пример №13

Сколько четных пятизначных чисел можно составить из цифр 5, 6, 7, 8, 9, если цифры в числе не повторяются?

Решение:

Четное пятизначное число можно получить, если последней его цифрой будет 6 или 8. Чисел, у которых последней является цифра 6, будет (рис. 79),

а тех, у которых последней является цифра 8, - также 24. По комбинаторному правилу сложения всего четных чисел будет .

Ответ. 48.

Пример №14

Азбука племени АБАБ содержит всего две буквы - «а» и «б». Сколько слов в языке этого племени состоит: 1) из двух букв; 2) из трех букв?

Решение:

1) аа, ба, аб, бб (всего четыре слова); 2) ааа, ааб, аба, абб, ббб, бба, баб, баа (всего восемь слов).

Заметим, что найденное количество слов соответствует комбинаторному правилу умножения. Так как на каждое место есть два «претендента» - «а» и «б», то слов, состоящих из двух букв, будет , а из трех букв - .

Пример №15

В футбольной команде из 11 игроков надо выбрать капитана и его заместителя. Сколькими способами это можно сделать?

Решение:

Капитаном можно выбрать любого из 11 игроков, а его заместителем - любого из 10 оставшихся игроков. Таким образом (по правилу умножения), имеем разных способов.

Пример №16

В Стране Чудес 10 городов и каждые два из них соединяет авиалиния. Сколько авиалиний в этой стране?

Решение. Так как каждая авиалиния соединяет два города, то одним из них может быть любой из 10 городов, а другим - любой из 9 оставшихся. Следовательно, количество авиалиний равно . Но при этом каждую из авиалиний мы учли дважды. Поэтому всего их будет .

Комбинаторные задачи неразрывно связаны с задачами теории вероятностей, еще одного раздела математики.

В ХIII-ХII в. до н. э. встречаются упоминания о вопросах, близких к комбинаторным. Некоторые комбинаторные задачи решали и в Древней Греции. В частности, Аристоксен из Тарента (IV в. до н. э.), ученик Аристотеля, перечислил различные комбинации длинных и коротких слогов в стихотворных размерах. А Папп Александрийский в IV в. н. э. рассматривал число пар и троек, которые можно получить из трех элементов, допуская их повторения. Некоторые элементы комбинаторики были известны и в Индии во II в. до н. э. Индийцы умели вычислять числа, известные нам как коэффициенты формулы бинома Ньютона. Позднее, в VIII в. н. э., арабы нашли и саму эту формулу, и ее коэффициенты, которые сейчас вычисляют с помощью комбинаторных формул или «треугольника Паскаля».

Свой нынешний вид упомянутые комбинаторные формулы приобрели благодаря средневековому ученому Леви бен Гершону (XIV в.) и французскому математику П. Эригону (XVII в.).

В III в. н. э. сирийский философ Порфирий для классификации понятий составил специальную схему, получившую название «древо Порфирия». Сейчас подобные деревья используются для решения определенных задач комбинаторики в разнообразных областях знаний. Некоторые ранее неизвестные комбинаторные задачи рассмотрел Леонардо Пизанский (Фибоначчи) в своей знаменитой «Книге абака» (1202 г.), в частности, о нахождении наименьшего набора различных гирь, позволяющего взвесить груз с любой целочисленной массой, не превышающей заданного числа. Со времен греческих математиков были известны две последовательности, каждый член которых получали по определенному правилу из предыдущих, - арифметическая и геометрическая прогрессии. А Фибоначчи впервые в одной из задач выразил член последовательности через два предыдущих, используя формулу, которую назвали рекуррентной. В дальнейшем метод рекуррентных формул стал одним из мощнейших для решения комбинаторных задач.

Как ни странно, развитию комбинаторики в значительной степени способствовали азартные игры, которые были очень популярны в XVI в. В частности, вопросами определения разнообразных комбинаций в игре в кости в то время занимались такие известные итальянские математики, как Д. Кардано, H. Тарталья и др. А наиболее полно изучил этот вопрос в XVII в. Галилео Галилей.

Современные комбинаторные задачи высокого уровня сложности связаны с объектами в других отраслях математики: определителями, конечными геометриями, группами, математической логикой и т. п.

Пример №17

В городе есть два университета — политехнический и экономический. Абитуриенту нравятся три факультета в политехническом университете и два — в экономическом. Сколько возможностей имеет студент для поступления в университет?

Решение:

Обозначим буквой множество факультетов, которые выбрал абитуриент в политехническом университете, а буквой — в экономическом: Поскольку эти множества не имеют общих элементов, то в делом абитуриент имеет возможностей для поступления в университет.

Описанную ситуацию можно обобщить в виде утверждения, которое называется правилом суммы.

Если элемент некоторого множества можно выбрать способами, а элемент множества способами, то элемент из множества или из множества можно выбрать способами.

Правило суммы распространяется и на большее количество множеств.

Пример №18

Планируя летний отдых, семья определилась с местами его проведения: в Одессе — 1, в Евпатории — 3, в Ялте — 2, в Феодосии — 2. Сколько возможностей выбора летнего отдыха имеет семья?

Решение:

Поскольку все базы отдыха разные, то для решения задачи достаточно найти сумму элементов всех множеств, о которых говорится: Следовательно, семья может выбирать отдых из 8 возможных.

Пример №19

От пункта до пункта ведут три тропинки, а от — две. Сколько маршрутов можно проложить от пункта до пункта

Решение:

Чтобы пройти от пункта до пункта надо выбрать одну из трёх тропинок: 1, 2 или 3 (рис. 136). После этого следует выбрать одну из двух других троп: 4 или 5. Всего от пункта до пункта ведут 6 маршрутов, потому что Все эти маршруты можно обозначить с помощью пар:

Обобщим описанную ситуацию.

Если первый компонент пары можно выбрать способами, а. второй — способами, то такую пару можно выбрать способами.

Это — правило произведения, его часто называют основным правилом комбинаторики. Обратите внимание: речь идёт об упорядоченных парах, составленных из различных компонентов.

Правило произведения распространяется и на упорядоченные тройки, четвёрки и любые другие упорядоченные конечные множества. В частности, если первый компонент упорядоченной тройки можно выбрать способами, второй — способами, третий — способами, то такую упорядоченную тройку можно выбрать способами. Например, если столовая на обед приготовила 2 первых блюда — борщ (б) и суп (с), 3 вторых — котлеты (к), вареники (в), голубцы (г) и 2 десертных — пирожные (п) и мороженое (м), то всего из трёх блюд столовая может предложить 12 различных наборов, поскольку

Описанной ситуации соответствует диаграмма, изображённая на рисунке 137. Такие диаграммы называют деревьями.

Пример №20

Сколько разных поездов можно составить из 6 вагонов, если каждый из вагонов можно поставить на любом месте?

Решение:



Поделиться:


Последнее изменение этой страницы: 2022-01-22; просмотров: 92; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.86.134 (0.142 с.)