Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Лекция№5. Процессы формирующие качество продукции общественного питания.

Поиск

План:

1.Диффузия и осмос.

2.Набухание и адгезия.

3.Термомассоперенос.

 

1.Кулинарная обработка, особенно тепловая, вызывает в про­дуктах глубокие физико-химические изменения. Эти изменения могут приводить к потерям питательных веществ, существенно влиять на усвояемость и пищевую ценность продуктов, изме­нять их цвет, приводить к образованию новых вкусовых и аро­матических веществ. Без знания сущности происходящих про­цессов нельзя сознательно подходить к выбору режимов техно­логической обработки, обеспечивать высокое качество готовых блюд, уменьшать потери питательных веществ. Ниже излага­ются только общие вопросы, связанные с изменением пищевых веществ при кулинарной обработке, более подробно они рас­сматриваются в соответствующих разделах.

При промывании, замачивании, варке и припускании про­дукты соприкасаются с водой и из них могут извлекаться ра­створимые вещества. Процесс этот называется диффузией, и подчиняется закону Фика. Согласно этому закону скорость диффузии зависит от площади поверхности продукта. Чем она боль­ше, тем быстрее происходит диффузия. Это необходимо учитывать при хранении очищенных овощей в воде или их промы­вании, варке. Так, площадь поверхности клубней (среднего размера) 1 кг картофеля составляет примерно 160-180 см, а нарезанного брусочками - более 4500 см2, т. е. в 25-30 раз больше. Соответственно из нарезанного картофеля будет из­влечено растворимых веществ больше, чем из целых клубней, за один и тот же период хранения. Поэтому не следует хра­нить в воде или варить основным способом предварительно на­резанные овощи.

Скорость диффузии зависит от концентрации растворимых веществ  в продукте и окружающей среде. Концентрация ра­створимых веществ  в продукте может быть очень значительной.

Так, концентрация сахаров в свекле составляет 8-10 %, моркови - 6,5, брюкве - 6%. При погружении овощей в воду: экстракция растворимых веществ вначале идет с большой ско­ростью из-за разницы концентраций, а затем постепенно за­медляется и при выравнивании концентраций прекращается. Концентрационное равновесие наступает тем быстрее, чем меньше объем жидкости. Этим объясняется то, что при при­пускании и варке продуктов паром потери растворимых ве­ществ меньше, чем при варке основным способом. Поэтому для уменьшения потерь питательных веществ при варке продук­тов жидкость берут с таким расчетом, чтобы только покрыть продукт. И наоборот, если надо извлечь как можно больше растворимых веществ (варка говяжьих почек, отваривание не­которых грибов перед жаркой и т. д.), то воды для варки долж­но быть больше.

Диффузия растворимых веществ осложняется особеннос­тями структуры пищевых продуктов. Растворимые вещества, прежде чем перейти в варочную среду с поверхности продук­та, должны продиффундировать из глубинных слоев. коэффи­циент внутренней диффузии обычно много меньше, чем внеш­ней. Следовательно, скорость перехода растворимых веществ в варочную среду определяется не только разностью концентра­ций в продукте и в' окружающей среде, но и скоростью внут­ренней диффузии.

Таким образом, уменьшить переход питательных веществ из продукта в варочную среду можно, не только сократив объем жидкости, взятой для варки, но и замедлив внутреннюю диф­фузию растворимых веществ в самом продукте. Для этого не­обходимо создать в продукте значительный градиент (пере­пад) температуры, для чего сразу погрузить его в горячую воду. В этом случае в результате термомассопереноса влага и растворенные в ней вещества перемещаются из поверхност­ных слоев вглубь продукта (термическая диффузия). Терми­ческая диффузия, направленная противоположно потоку кон­центрационной диффузии, снижает переход питательных ве­ществ в варочную среду. Если надо извлечь как можно больше растворимых веществ, продукт при варке закладывают в хо­лодную воду.

Осмосом называется диффузия через полупроницаемые перегородки. Причина возникновения концентрационной диффузии и осмоса одна и та же - выравнивание концентрации. Однако способы выравнивания резко отличаются друг от друга:

Диффузия осуществляется перемещением растворенного ве­щества, а осмос - перемещением молекул растворителя и воз­никает при наличии полупроницаемой перегородки. Этой пере­городкой в растительных и животных клетках служит мембрана.

В кулинарной практике явление осмоса наблюдается при замачивании повядших корнеплодов, клубней картофеля, кор­ней хрена с целью облегчения очистки, снижения количества отходов. При замачивании овощей вода поступает внутрь клет­ки до наступления концентрационного равновесия, объем ра­створа в клетке увеличивается, возникает избыточное давле­ние, называемое осмотическим или тургором. Тургор при­дает овощам и другим продуктам прочность, упругость.

Если поместить овощи или фрукты в раствор с высокой концентрацией сахара или соли, то наблюдается явление, об­ратное осмосу, - плазмолиз. Оно заключается в обезво­живании клеток и имеет место при консервировании плодов и овощей, при квашении капусты, солении огурцов и др. При плазмолизе осмотическое давление внешнего раствора боль­ше, чем давление внутри клетки. В результате происходит выделение клеточного сока. Потеря его ведет к уменьшению объема клетки, нарушению нормального протекания физичес­ких и химических процессов в ней. Подбирая концентрацию ра­створа (например, сахара при варке фруктов в сиропе), тем­пературный режим варки и ее продолжительность, можно из­бежать сморщивания плодов, уменьшения их объема, ухудше­ния внешнего вида.

2.Некоторые высохшие студни (ксерогели) способны набу­хать - поглощать жидкость, при этом их объем значительно увеличивается. Набухание следует отличать от впитывания жид­кости порошкообразными или пористыми телами без увеличе­ния объема, хотя эти два процесса часто происходят од­новременно. Набухание либо является целью обработки (зама­чивание сушеных грибов, овощей, круп, бобовых, желатина),' либо сопровождает другие способы обработки (варка крупы, макарон и других продуктов).

Набухание может быть ограниченным (набухшее вещество остается в состоянии геля) и неограниченным (вещество после набухания переходит в раствор). При повышении температуры ограниченное состояние нередко переходит в неограниченное. Так, желатин при температуре 20-22'С набухает ограничен­но, а при более высокой - неограниченно (растворяется прак­тически полностью).

Замачивание крупы, бобовых, сушеных грибов и овощей обусловливается не только набуханием белковых и углевод­ных ксерогелей, но и осмосом, и капиллярным впитыванием Замачивание ускоряет последующую тепловую обработку продуктов, способствует равномерному провариванию их.

Адгезия (от лат. adhaesio) - слипание поверхности двух разнородных тел. В кулинарной практике явление адгезии до­вольно широко распространено и часто играет отрицательную роль. Так, при жарке мясных и рыбных полуфабрикатов при­липание их к жар очной поверхности крайне нежелательно. Для уменьшения адгезии полуфабрикаты панируют в муке или су-

харях и используют при жарке жир..

Отрицательную роль играет адгезия и при транспортиров­ке мясного фарша по трубам в поточных линиях при произ­водстве котлет. Трубопроводы засаливаются, на их стенках нарастает слои жира. Адгезия затрудняет и формовку изделий.

Уменьшение адгезии весьма актуально при выпечке из­делии из теста, а также при изготовлении самого теста (по­тери в деже, на лопастях тестомесильных машин, на разде­лочных столах и т. д.). Одним из способов снижения степени адгезии является использование муки "на подпыл" при фор­мовке изделий. В этом случае с поверхностью противней контактирует уже не тесто, а мука, адгезия которой к повер­хности инвентаря значительно меньше. Часть муки при этом прилипает к тесту и попадает в готовые изделия, а часть теряется.

Для предупреждения прилипания кулинарной продукции в процессе ее тепловой обработки в последние годы широко используют оборудование и инвентарь со специальным покры­тием, прослойки из полимерных материалов, так называемых антиадгезивов. Использование антиадгезивов повышает куль­туру производства и производительность труда. Обязательным условием применения полимерных материалов являются их безвредность, инертность по отношению к пищевому продукту

и устойчивость при нагревании. Причем термостойкость долж­на сохраняться длительное время.

3.Как уже отмечалось, поверхностный нагрев создает в про­дуктах градиент температуры и вызывает перемещение влаги. Пищевые продукты представляют собой капиллярно-пористые тела. В капиллярах на влагу действуют силы поверхностного натяжения. Если оба конца капилляра имеют одинаковую тем­пературу, то влага в нем находится в равновесии. Если же один конец капилляра нагреть, то поверхностное натяжение его уменьшится. Но поскольку на другом конце капилляра оно будет прежним, жидкость вместе с растворенными в ней ве­ществами будет передвигаться от нагретого конца к холодному. Благодаря этому возникает поток влаги от нагретой поверхнос­ти продукта к его холодному центру (термодиффузия). Одно­временно часть влаги с поверхности изделия под действием высокой температуры испаряется. Поверхностный слой быстро обезвоживается, в нем повышается температура, под действи­ем которой глубокие изменения претерпевают отдельные пи­щевые вещества (меланоидинообразование, декстринизация крахмала, карамелизация сахаров и др.), в результате чего на продукте образуется румяная корочка. Образовавшаяся короч­ка уменьшает потери влаги, а следовательно, и массы изделия за счет испарения. Чем горячее поверхность при жарке, чем выше градиент температуры, тем быстрее образуется короч­ка. По мере образования обезвоженного поверхностного слоя возникает разница в содержании влаги (градиент влагосодер­жания). В поверхностных слоях влагосодержание меньше, в глубине - больше, вследствие чего поток влаги направляется к поверхности. При стационарном тепловом режиме устанав­ливается равновесие этих двух потоков: направленного к цен­тру (вызванного термомассопереносом) и направленного к по­верхности (вызванного градиентом влагосодержания).

Контрольные вопросы.

 

  Лекция №6. Изменение белков.

План:

1.Значение белков в кулинарных рецептурах.

2.Химическая природа и строение белков.

3.Гидротация и дегидратация белков.

4.Денатурация и деструкция белков.

 

 

1.Белки являются структурными элементами клеток; служат материалом для образования ферментов, гормонов и др.; влияют на усвояемость жиров, углеводов, витаминов, минеральных веществ и т. д. Ежесекундно в нашем организме отмирают миллионы клеток и для восстановления их взрослому человеку требуется 80-I00 г белка в сутки, причем заменить его другими веще­ствами невозможно. Поэтому технологи, занятые организацией питания постоянного контингента потребителей по дневным ра­ционам (интернаты, санатории, больницы и т. д.) или скомплек­тованному меню отдельных приемов пищи, должны обеспечи­вать содержание белка в блюдах, соответствующее физиоло­гическим потребностям человека.

Пользуясь таблицами химического состава готовых блюд, можно разработать меню рациона так, чтобы удовлетворить потребность питающихся в белках, как по количеству, так и по качеству, т. е. обеспечить биологическую ценность.

Биологическая ценность белков определяется содержани­ем незаменимых аминокислот (НАК), их соотношением и пере­вариваемостью. Белки, содержащие все НАК (их восемь: трип­тофан, лейцин, изолейцин,  валин,  треонин, лизин, метионин, фенилаланин) и в тех соотношениях, в каких они входят в бел­ки нашего организма, называются полноценными. К ним относятся белки мяса, рыбы, яиц, молока. В растительных бел­ках, как правило, -недостаточно лизина, метионина, трипто­фана и некоторых других НАК. Так, в гречневой крупе недо­стает лейцина, в рисе и пшене - лизина. Незаменимая амино­кислота, которой меньше всего в данном белке, называется лимитирующей. Остальные аминокислоты усваиваются в адекватных с ней количествах. Один продукт может дополнять другой по содержанию аминокислот. Однако такое взаимное. обогащение происходит только в том случае, если эти продук­ты поступают в организм с разрывом во времени не более чем 2-3 ч. Поэтому,большое значение имеет сбалансированность по аминокислотному составу не только суточных рационов, но и отдельных приемов пищи и даже блюд. Это необходимо учитывать при создании рецептур блюд и кулинарных изде­лий, сбалансированных по содержанию НАК

Наиболее удачными комбинациями белковых продуктов являются:

• мука + творог (ватрушки, вареники, пироги с творогом);

·картофель + мясо, рыба или яйцо (картофельная запекан­ка с мясом, мясное рагу, рыбные котлеты с картофелем и др.);

• гречневая, овсяная каша + молоко, творог (крупеники,

каши с молоком и др.);     .

• бобовые с яйцом, рыбой или мясом.

Наиболее эффективное взаимное обогащение белков достигается при их определенном соотношении, например:

· 5 частей мяса + 10 частей картофеля;

· 5 частей молока + 1 О частей овощей;

· 5 частей рыбы + 1 О частей овощей;

·2 части яиц + 10 частей овощей (картофеля) и т. д. Усвояемость белков зависит от их физико-химических свойств, способов и степени тепловой обработки продуктов. Например, белки многих растительных продуктов плохо пере­вариваются, так как заключены в оболочки из клетчатки и других веществ, препятствующих действию пищеварительных ферментов (бобовые, крупы из цельных зерен, орехи и др.). Кроме того, в ряде растительных продуктов содержатся ве­щества, тормозящие действие пищеварительных ферментов (фазиолин фасоли)..

По скорости переваривания на первом месте находятся белки яиц, молочных продуктов и рыбы, затем мяса (говяди­на, свинина, баранина) и, наконец, хлеба и крупы. Из белков животных продуктов в кишечнике всасывается более 90% ами­нокислот, из растительных - 60-80%.

Размягчение продуктов при тепловой обработке и проти­рание их улучшает усвояемость белков, особенно раститель­ного происхождения. Однако при избыточном нагревании со­держание НАК может уменьшиться. Так, при длительной теп­ловой обработке в ряде продуктов снижается количество дос­тупного для усвоения лизина. Этим объясняется меньшая усво­яемость белков каш, сваренных на молоке, по сравнению с белками каш, сваренных на воде, но подаваемых с молоком. Чтобы повысить усвояемость каш, рекомендуется крупу пред­варительно замачивать для сокращения времени варки и до­бавлять молоко перед окончанием тепловой обработки.

2. Белки — это природные полимеры, состоящие из остатков сотен и тысяч аминокислот, соединенных пептидной связью. По форме молекулы все белки можно разделить на глобулярные и фибриллярные. По растворимости все белки делятся на следующие группы:

* растворимые в воде — альбумины;

* растворимые в солевых растворах — глобулины;

* растворимые в спирте — проламины;

* растворимые в щелочах — глютелины.

По степени сложности белки делятся на протеины (простые белки), состоящие только из остатков аминокислот, и протеиды (сложные белки), состоящие из белковой и небел­ковой частей.

Различают четыре структуры организации белка:

* первичная — последовательное соединение аминокис­лотных остатков в полипептидной цепи;

* вторичная — закручивание полипептидных цепей в спирали;

* третичная — свертывание полипептидной цепи в гло­булу;

* четвертичная — объединение нескольких частиц с тре­тичной структурой в одну более крупную частицу.

Белки обладают свободными карбоксильными или кислот­ными и аминогруппами, в результате чего они амфотерные т. е. в зависимости от реакции среды проявляют себя как кислоты или как щелочи. В кислой среде белки проявляют ще­лочные свойства, и частицы их приобретают положительные заряды, в щелочной они ведут себя как кислоты, и частицы их становятся отрицательно заряженными.

При определенном рН среды (изоэлектрическая точка) чис­ло положительных и отрицательных зарядов в молекуле белка одинаково. Белки в этой точке электронейтральны, а их вяз­кость и растворимость наименьшие. Для большинства белков изоэлектрическая точка лежит в слабокислой среде. Наиболее важными технологическими свойства­ми белков являются: гидратация (набухание в воде), денату­рация, способность образовывать пены, деструкция и др.

3.Гидратацией называется способность белков прочно связывать значитель­ное количество влаги. Примерами гидратации в кулинарной практике являются: приготовление омлетов, котлетной массы из продуктов живот­ного происхождения, различных видов теста, набухание бел­ков круп, бобовых, макаронных изделий и т. д. Дегидратацией называется потеря белками связан­ной воды при сушке, замораживании и размораживании мяса и рыбы, при тепловой обработке полуфабрикатов и т. д.  От степени дегидратации зависят такие важные показатели, как влажность готовых изделий и их выход.

4. Денатурация белков. Это сложный процесс, при котором под влиянием внешних факторов (температуры, механическо­го воздействия, действия кислот, щелочей, ультразвука и др.) происходит изменение вторичной, третичной и четвертичной. Процесс этот в глобулярных и фибриллярных белках происходит по-разному. В глобулярных бел­ках при нагревании усиливается тепловое движение полипептидных цепей внутри глобулы; водородные связи, которые удерживали их в определенном положении, разрываются и полипептидная цепь развертывается, а затем сворачивается по-новому. При этом полярные (заряженные) гидрофильные груп­пы, расположенные на поверхности глобулы и обеспечиваю­щие ее заряд и устойчивость, перемещаются внутрь глобулы, :, на поверхность ее выходят реакционноспособные гидрофоб­ные группы (дисульфидных, сульфгидрильные и др.), не спо­собные удерживать воду.

 Денатурация сопровождается изменениями важнейших свойств белка:

* потерей индивидуальных свойств

* потерей биологической активности

* повышением атакуемости пищеварительными фермен­тами

* потерей способности к гидратации

* потерей устойчивости белковых глобул, которая сопро­вождается их агрегированием

Агрегирование — это взаимодействие денатуриро­ванных молекул белка, которое сопровождается образованием более крупных частиц. Так в малоконцентрированных растворах (до 1%) свернувшийся белок образует хлопья т (пена на поверхности бу­льонов). В более концентрированных белковых растворах (на­пример, белки яиц) при денатурации образуется сплошной гель, удерживающий всю воду, содержащуюся в коллоидной систе­ме. Белки, представляющее собой более или менее обводнен­ные гели (мышечные белки мяса, птицы, рыбы; белки круп, бобовых, муки после гидратации и др.), при денатурации уп­лотняются, при этом происходит их дегидратация с отделением жидкости в окружающую среду. Фибриллярные белки денатурируют иначе: связи, кото­рые удерживали спирали их полипептидных цепей, разрыва­ются, и фибрилла (нить) белка сокращается в длину. Так  дена­турируют белки соединительной ткани мяса и рыбы.

Деструкция белков. При длительной тепловой обработке белки подвергаются более глубоким изменениям, связанным с разрушением их макромолекул. На первом этапе изменений от белковых молекул могут отщепляться функциональные груп­пы с образованием таких летучих соединений, как аммиак, сероводород, фосфористый водород, углекислый газ и др. Накап­ливаясь в продукте, они участвуют в образовании вкуса и аро­мата готовой продукции. При дальнейшей гидротермической обработке белки гидролизуются, при этом первичная (пептидная) связь разрывается с образованием растворимых азотис­тых веществ небелкового характера (например, переход кол­лагена в глютин).

Пенообразование. Белки в качестве пенообразователей широко используют при производстве кондитерских изделий (тесто бисквитное, белково-взбивное), взбивании сливок, сме­таны, яиц и др. Устойчивость пены зависит от природы белка, его концентрации, а также температуры.

Контрольные вопросы:

 

 

  Лекция №7. Изменение белков животного происхождения.

План:

1.Изменение белков куриного яйца.

2.Изменение белков молока.

3.Изменение белков мяса, птицы, рыбы.

4. Размягчение мяса.

1.Белки яиц. В желтке содержится несколько больше протеи­нов (белков), чем в остальной части яйца. К важнейшим про­теинам яиц относятся овальбумин, овоглобулин, кональбумин.. В кулинарии большое значение имеют фосфопротеины яиц, находящиеся в желтке (вителлин и др.). В них имеются фос­фатидные группы, поэтому они являются хорошими эмульга­торами, что позволяет использовать их при получении соуса майонез.

При нагревании белки яиц также денатурируют, а затем свертываются. Свертывание протеинов яичного белка начина­ется при 50~550, при 75° весь белок превращается в студнеоб­разную белую массу, которая при дальнейшем нагревании ста­новится более плотной и при 80° уже хорошо сохраняет свою форму. Желток начинает густеть только при 70°.

Поскольку концентрация белков в яйце высокая, они коагулируют, образуя сплошной гель без отделения влаги.

В яйце содержатся белки, являющиеся антиферментами и тормозящие пищеварение (овомукоид). Во время тепловой обра­ботки антиферменты разрушаются и яйца усваиваются лучше.

Однако не следует забывать, что уплотнение белковых гелеи затрудняет их переваривание и поэтому яйца, сваренные вкру­тую, усваиваются хуже, чем сваренные всмятку или «в мешо­чек».

2. Белки молока полноценны и хорошо усваива­ются. В молоке содержится казеин, лактоальбумин, лактогло­булин и ряд других белков. Больше всего в молоке казеина (2,5-3 %). Это сложный белок, относящийся к фосфопротеи­дам, Благодаря тому, что в молекуле казеина гидроксильные группы аминокислоты серина образуют эфирные связи с фос­форной кислотой, он обладает кислотностью. В молоке содер­жатся кальциевые соли казеина. При повышении кислотности в результате скисания или добавления кислот кальций отщеп­ляется от молекул казеината, в результате чего образуется сво­бодный казеин, который нерастворим в воде. При этом молоко свертывается и образуется студень (простокваша). При нагре­вании эти студни уплотняются (сворачиваются).Нагревание молока вызывает изменение и других белков. Так, при нагревании выше 60° происходит денатурация альбу­мина, который свертывается и выпадает в виде хлопьев на дне и стенках посуды.

Денатурацией белков обусловлено и образование пенки при кипячении молока. Дело в том, что в поверхностном слое под влиянием сил поверхностного натяжения уже частично произошла денатурация белков, и поэтому при нагревании на поверх­ности она происходит быстрее. Образующаяся пенка состоит из денатурированного альбумина, свободного казеина, фосфорно­кислого кальция, жира и других веществ. В молоке с нормаль­ной кислотностью денатурация казеина не происходит, 'а в мо­локе с повышенной кислотностью он свертывается тем быстрее, чем выше кислотность. Белок молока липопротеин состоит и~ белкового компонента и соединенного с ним лецитина, основой молекулы которого являются эфир глицерина и фосфорной кислоты. Поскольку ли­попротеин является жироподобным веществом, он образует за­щитную оболочку вокруг жировых шариков молока, не давая им слипаться. При этом молекулы липопротеина располагаются таким образом, что лецитиновый компонент их обращен к жи­ровому шарику, а белковый - к водной фазе.

3. Мышечная ткань мяса со­стоит из очень тонких длинных мышечных волокон. Толщина их меньше 0,1-0,15мм, а длина достигает нескольких сантимет­ров. Сверху мышечные волокна окружены оболочкой- сарколеммой., состоящей из фибриллярных белков. Внутри мышечного волокна находятся студнеобразные нити - м u оф u бриллы и жидкость - саркоплазма. Саркоплазма не только пропитывает студень миофибрилл, но и окружает их.

 

Мышечные волокна соединяются по нескольку вместе и об­ разуют первичный мышечный пучок. Первичные пучки сгруппи­ровываются в более крупные, вторичные, которые образуют еще более крупные - третичные и т. д., и, наконец, целую мышцу. Все мышечные волокна соединены между собой соединительной тканью, называемой мизием. Она же окружает мышцу сверху оболочкой (пленкой).. Между мышечными волокнами внутри первичных пучков находится наиболее нежная соединительная ткань - эндомизий (эндо - внутренний). Эндомизий непосред­ственно переходит в более грубую соединительную ткань, распо­ложенную между мышечными волокнами - n еримизий (про­межуточныи мизии), а свер­ху  мышца окружена еще бо­лее грубой соединительной тканью - Эпимизием, т. е. на­ружной соединительной тка­нью.Изменение мышечных бел­ ков при кулинарной обработ­ке. Студнеобразные миофиб­риллы, расположенные внутри мышечных волокон, состоят из глобулярных белков миозина, актиномиозина и других, а  так же фибриллярного белка актина. Эти белки находятся в состоянии студня.

Жидкое содержимое мышечных волокон представляет собой водный раствор белков (глобулина, миогена, миоглобина и др.), растворимых  азотистых и без азотистых экстрактивных веществ, минеральных солеи и т. д.

Количество мышечных белков в мякоти говяжьей туши в среднем составляет около 13,4 %, в бараньей и свиной - не­сколько меньше (за счет большего количества жира). В раз­личных частях туши содержание мышечных белков неодинаково, так, например, у говьяжей туши меньше всего их в голяшка (6-1 О %), немного больше в грудинке и пашине (11 %) и больше всего в толстом и тонком краях, вырезке, мякоти задней ноги (до 14,3%).

Состав мышечных белков следующий;

Миофибриллы- актин, миозин (актимиозин);

саркоплазма -миоген, миоальбумин, глобулин, миоглобулин;

ядра - нуклеопротеиды;

 саркоплазма - коллаген, эластин.

Миозин составляет 35% всех белков мышечной ткани' встре­чается он также в мышцах птиц и рыб. При обработке водои миозин в раствор не переходит, но при добавлении соли (около 2-3%) хорошо растворяется и переходит в раствор. Поэтому добавлять соль в холодную воду (до нагревания) при варке бульонов не рекомендуется.

 Актин составляет 12·-15% мышечных белков. Он может су­ществовать в двух формах – глобулярной  и фибриллярной.

  Актомиоз u н - белок, из которого в основном построены мио­фбриллы. Он отличается высокой вязкостью, не растворяется в воде, а только в растворе солей.

Тропомиозин - также структурный белок миофибрилл, не растворяется в воде, но растворяется в солевых растворах.

Глобулин Х-  В воде нерастворим, но при добавлении соли переходит в раствор.

Миоген u м u оальбум u н - хорошо растворимы в воде.

Миоглобин - сложный белок хромопротеид. При гидролизе онl распадается на белок и небелковую группу - гем. От миоглобина зависит окраска мышц. В работающих мышцах его со­держится больше. Например, мышцы ног окрашены сильнее, чем спинные; говядина темнее телятины; грудные мышцы у птиц (белое мясо, филе) почти не окрашены.

При тепловой обработке (жаренье, варке) растворенные мышечные белки, содержащиеся в саркоплазме, денатурируют и свертываются, а белки миофибрилл, находящиеся в виде студня, уплотняются и выпрессовывают содержащуюся в них жидкость вместе с растворимыми в ней веществами.

Денатурация растворимых мышечных белков мяса начина­ется при 30-35 ˚, и к тому времени, как мясо проrреется до 60­˚около 90% всех растворимых белков денатурируют и теряют' растворимость. Однако даже прогревание мяса до 95-100 ˚не вызывает полной денатурации белков, и некоторая часть их сохраняет, но теряют способность растворяться.

Уплотнение белковых гелей миофибрилл приводит не только к выпрессовыванию жидкости, но и уплотнению  мышечных во­локон, повышению их прочности.

При варке мяса и птицы, пока продукты не прогрелись, часть водорастворимых белков (миоген) переходит в воду, об­разует очень разбавленный раствор и при дальнейшем нагревании свертывается, выделяясь в виде хлопьев на поверхности бульона.

Если воду, в которой варится мясо или птица, посолить до прогревания продуктов, то в раствор перейдет больше белков за счет глобулинов (растворимых в присутствии солеи) и коли­чество пены увеличится. Поэтому при варке мяса воду солят после того, как мясо прогреется и белки потеряют способность растворятся.

Изменение белков соединительной ткани мяса. Соединитель­ная ткань может быть рыхлой (сопровождает кровеносные сосуды, заполняет промежутки между органами, образует подкож­ную клетчатку), плотной с большим содержанием коллагена (сухожилия, кожные покровы, фасции), плотной с большим содержанием эластина (желтые связки, например выйная). Из коллегановой ткани состоят и соединительные прослойки между пучками мышц (мизий).

Чем больше в ткани эластина и меньше коллагена, тем труднее и меньше она размягчается при тепловой обработке.

Сырье с большим содержанием коллагена (уши и губы, голяшки) целесообразно использовать для варки студней.

. Большое значение имеет изменение белков соединительной ткани мышц коллагена и эластина.

- Коллаген относится к фибриллярным белкам. В его моле­куле, кроме белковой основы, содержатся и углеводы. Коллаген неоднороден; различают три разновидности его: проколлаген, тропоколлаген, обычный или зрелый коллаген.  Тропоколлаген растворяется в растворах нейтральных со­лей; проколлаген -- в слабых растворах кислот. Их больше в соединительной ткани молодых животных. С возрастом живот­ных они переходят в зрелый коллаген, который не растворяется. Однако в соединительной ткани взрослых животных сохраня­ется незначительное количество биологических предшественни­ков зрелого коллагена - тропо- и проколлаген. Эндомизий состоит из волокон коллагена, к оторые располагаются параллельными пучками. Эндомизий во всех частях ту­ши обладает более или менее одинаковыми свойствами.

 Перимизий отличается от эндомизия тем, что он состоит не только из вол о кон коллагена, но и из волокон другоrо фиб­риллярного белка - эластина. Перимизй в отдельных частях туши неодинаков, и различия в его свойствах в значительной мере определяют кулинарное использование мяса. В таких ча­стях туши, как вырезка, тонкий и толстый края, верхняя и внутренняя части задней ноги, он очень нежен и по строению похож на эндомизий, только коллагеновые волокна в нем более толстые наряду с ними имеются волокна эластина. Однако чем грубеемышца, чем больше работала она при жизни животного, тем коллагеновые волокна перимизия толще, тем больше в ней эластиновых волокон и сложнее сама структура волокна ее ветвятся, образуют сложные переплетения и при­дают мышцам жесткость (шея, голяшка, пашина).

Больше всего эластина в шейных мышцах, пашине и меньше всего в частях задней четверти (кроме пашины). При нагре­вании мяса в процессе кулинарной обработки  эластиновые  во­локна изменяются мало.

Коллагеновые волокна при температуре около 60 град. сва­риваются, сокращаясь почти наполовину своей первоначальной длины.

Сокращенные волокна коллагена резко отличаются от на­тивных. Это связано с денатурацией. Они менее устойчивы про­тив действия пищеварительных ферментов. Сваривание кол­лагена приводит к следующему:  куски мяса при жаренье, варке деформируются; 2) мясной сок вместе с растворимыми белками, экстрактивными веществами' и минеральными солями  выпрессовывается  в окружающую среду.

Чтобы куски мяса, особенно при жаренье, не деформирова­лись, их отбивают или делают насечки, перерезая соединитель­ную ткань. Если мясо измельчить, нарушив непрерывность сое­динительной ткани, то сок при тепловой обработке изделий не  выпрессовывается  и они меньше теряют в весе (варка фрикаде­лек, жаренье бифштексов рубленых и т. д.).

Распад коллагена в кислой среде происходит быстрее. Это объясняется тем, что, во-первых, коллаген неоднороден и одно из составляющих его веществ (проколлаген) растворимо в под­кисленной среде, а, во-вторых, кислота действует как катализатор, ускоряя переход коллагена в глютин. На этом основано маринование мяса перед жареньем и применение кислых соусов для тушения грубых частей мяса. Распад коллагена происходит тем быстрее, чем выше температура. Растворы, содержащие более 1% глютина, способны при охлаждении застывать, превра­щаясь в студни. На этом основаны приготовление заливных хо­лодных блюд с желатином и варка студней.

Мышечная ткань рыбы соединяется перимизием в зигзагообразные миокомы. Миокомы при помощи горизонтальных и вертикальных прослоек (септ)  образуют тело рыбы. Септы представляют собой прослойки соединительной ткани между отдельными мышцами. Строение мышечной ткани хорошо заметно у вареной рыбы, которая благодаря размягчению соединительной ткани хорошо разделяестся на миокомы, а последние делятся на пучки мышеч­ных волокон. Характер   изменения  мышечных белков рыбы тот же, что в мясе теплокровных животных, но процесс свертывания белков в тканях рыбы заканчивается уже при 75 град. Соединительная ткань почти полностью состоит из коллагена; его в рыбе от 1,6 до 5,1%. Из коллагена в значительной степени состоит кожа, чешуя и плавники. Сваривание каллагеновых волокон верхних кожистых покровов рыбы вызывает деформацию кусков при тепловой обработке, поэтому при изготовлении рыбных полуфабрикатов кожу в нескольких местах перерезают. Сваривание коллагеновых волокон происходит при более низкой температуре (40˚), чем у мяса.

4.Изменение веса мяса и рыбы при тепловой обработке. Денатурация белков приводит к изменению их коллоидного состоянии - коагуляции (свертыванию). Белки, переходящие в раствор, при варке коагулируют и образуют пену. Коагуляция большинства лиофильных коллоидов прежде всего характеризу­ется потерей способности удерживать влагу.

При варке мяса и рыбы уплотняется белковый гель миофиб­рилл, что приводит к уменьшению веса и объема продукта. Этому способствует также утолщение коллагеновых волокон в результате сваривания коллагена.

Количество воды, выделяемое мясом и рыбой, зависит от ряда причин: размера кусков, условий нагревания и т. п. Умень­шение веса продукта  обусловливается также и вытап­ливанием из него жира. Из мяса и рыбы переходят в окружающую среду вместе с водой растворимые вещества. К ним прежде всего относятся растворимые белки (коагулирующие и некоагулирующие), ко­торые выделяются в начале нагревания, минеральные соли, экстрактивные вещества (азотистые и безазотистые).

Выпрессовывание воды при коагуляции белков мяса проис­ходит наиболее интенсивно при 45'--75°, но продолжается и при более Высокой температуре вплоть до 100°. У рыб этот про­цесс заканчивается при 75°.

Экстрактивные вещества мяса и рыбы обусловливают вкус и сокогонное действие бульонов, поэтому практически важным является выбор такого режима варки, при котором наибольшее количество этих веществ переходит в раствор. На практике при­ 110

Для бульонов мясо заливают холодной водой, нагревают до кипения и варят при слабом кипении. В этом случае в рас­ твор переходит больше экстрактивных веществ, при этом мясо получается более плотным.

Для вторых блюд мясо погружают в горячую воду, доводят до кипения и варят без кипения при температуре 85-90˚. При этом белки мяса образуют более нежные сгустки, удерживают больше влаги, меньше экстрактивных веществ и белков перехо­дит в раствор. Мясо получается нежное, вкусное и более соч­ное.

 

При жаренье теряется значительно меньше питательных ве­ществ, чем при варке, так как часть воды испаряется с по­верхности, а растворимые в ней вещества остаются; часть их переходит в мясной сок. Здесь наблюдается такая же законо­мерность: изделия, положенные на очень горячую сковороду, меньше теряют питательных веществ, меньше дают сока и получаются более сочными. В качестве размягчителей используют: растворы неко



Поделиться:


Последнее изменение этой страницы: 2021-12-15; просмотров: 130; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.102.43 (0.013 с.)