Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Тема: Недесятичная арифметика и её правила.Содержание книги
Поиск на нашем сайте
1. Двоичная арифметика Арифметические операции во всех позиционных системах счисления выполняются по одним и тем же хорошо известным вам правилам. Сложение. Рассмотрим сложение чисел в двоичной системе счисления. В его основе лежит таблица сложения одноразрядных двоичных чисел: 0+0=0 0+1=1 1+0=1 1+1=10 Важно обратить внимание на то, что при сложении двух единиц происходит переполнение разряда и производится перенос в старший разряд. Переполнение разряда наступает тогда, когда величина числа в нем становится равной или большей основания. Сложение многоразрядных двоичных чисел происходит в соответствии с вышеприведенной таблицей сложения с учетом возможных переносов из младших разрядов в старшие. В качестве примера сложим в столбик двоичные числа 1102 и 112: 1102 + 112 10012 Проверим правильность вычислений сложением в десятичной системе счисления. Переведем двоичные числа в десятичную систему счисления и затем их сложим: 1102=1*22 + 1*21+ 0*20 = 610; 112 = 1*21 + 1*20 = 310; 610 + 310 = 910. Теперь переведем результат двоичного сложения в десятичное число: 10012 = 1*23 +0*22 + 0*21 + 1*20 = 910/ Сравним результаты – сложение выполнено правильно. Вычитание. Рассмотрим вычитание двоичных чисел. В его основе лежит таблица вычитания одноразрядных двоичных чисел. При вычитании из меньшего числа (0) большего (1) производится заем из старшего разряда. В таблице заем обозначен 1 с чертой: 0-0 =_0 0-1 =11 1-0 = 1 1-1 = 0 Вычитание многоразрядных двоичных чисел происходит в соответствии с вышеприведенной таблицей вычитания с учетом возможных заемов из старших разрядов. В качестве примера произведем вычитание двоичных чисел 1102 и 112: 1102 - 112 112 Умножение. В основе умножения лежит таблица умножения одноразрядных двоичных чисел: 0 *0 = 0 0 *1 = 0 1 *0 =0 1 * 1 =1 Умножение многоразрядных двоичных чисел происходит в соответствии с вышеприведенной таблицей умножения по обычной схеме, применяемой в десятичной системе счисления с последовательным умножением множимого на цифры множителя. В качестве примера произведем умножение двоичных чисел и: 1102 x 112___
110 110____ 100102
Деление. Операция деления выполняется по алгоритму, подобному алгоритму выполнения операции деления в десятичной системе счисления. В качестве примера произведем деление двоичного числа 1102 и 112: 1102 112___ - 102 11 0 Контрольные вопросы: 1. Какая арифметика называется недесятичной? 2. Как производится сложение, вычитание, умножение, и деление в двоичной системе счисления? 3. Как производится сложение, вычитание, умножение, и деление в восьмеричной системе счисления? 4. Как производится сложение, вычитание, умножение, и деление в шестнадцатеричной системе счисления?
Лекция № 6 Тема: Перевод чисел из заданной системы в другую. Методы перевода чисел Числа в разных системах счисления можно представить следующим образом:
где Значит, в общем виде задачу перевода числа из системы счисления с основанием q 1 в систему счисления с основанием q 2 можно представить как задачу определения коэффициентов bj нового ряда, изображающего число в системе с основанием q 2. В такой постановке задачу перевода можно решить подбором коэффициентов bj. Перевод чисел делением на основание новой системы Перевод целых чисел осуществляется делением на основание q 2 новой системы счисления, правильных дробей – умножением на основание q 2. Действия деления и умножения выполняются по правилам q 1 -арифметики. Перевод неправильных дробей осуществляется раздельно по указанным правилам, результат записывается в виде новой дроби в системе с основанием q 2. Пример 1. Перевести десятичное число A = 6110 в систему счисления с q = 2.
61 | 2 60 30 | 2 b 0 = 1 30 15 | 2 b 1 = 0 14 7 | 2 b 2 = 1 6 3 | 2 b 3 = 1 2 1 = b5 b 4 = 1 Ответ: 6110 = 1111012. Табличный метод перевода В простейшем виде табличный метод заключается в следующем: имеется таблица всех чисел одной системы с соответствующими эквивалентами из другой системы; задача перевода сводится к нахождению соответствующей строки таблицы и выбору из нее эквивалента. Такая таблица очень громоздка и требует большой емкости памяти для хранения.
Другой вид табличного метода заключается в том, что имеются таблицы эквивалентов в каждой системе только для цифр этих систем и степеней основания (положительных и отрицательных); задача перевода сводится к тому, что в выражение ряда (1) для исходной системы счисления надо поставить эквиваленты из новой системы для всех цифр и степеней основания и произвести соответствующие действия (умножения и сложения) по правилам q 2 -арифметики. полученный результат этих действий будет изображать число в новой системе счисления. Пример 2. Перевести десятичное число A = 113 в двоичную систему счисления, используя таблицу эквивалентов цифр и степеней основания (q 2 = 2).
Таблица 1 – Таблица эквивалентов
Решение. Подставив значения двоичных эквивалентов десятичных цифр и степеней основания в (3), получим A = 113 = 1 · 102 + 1 · 101 + 3 · 100 = 001 · 1100100 + 0001 · 1010 + 0011 · 0001 = 11100012. Ответ: 11100012.
|
|||||||||||||||||
Последнее изменение этой страницы: 2021-12-15; просмотров: 636; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.120.112 (0.009 с.) |